电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第九篇 解析几何第5讲 椭 圆课件 理 课件VIP免费

高考数学一轮复习 第九篇 解析几何第5讲 椭 圆课件 理 课件_第1页
1/46
高考数学一轮复习 第九篇 解析几何第5讲 椭 圆课件 理 课件_第2页
2/46
高考数学一轮复习 第九篇 解析几何第5讲 椭 圆课件 理 课件_第3页
3/46
第5讲椭圆第5讲椭圆【2013年高考会这样考】1.考查椭圆的定义及利用椭圆的定义解决相关问题.2.考查椭圆的方程及其几何性质.3.考查直线与椭圆的位置关系.椭圆焦点焦距a>ca=ca<c2.椭圆的标准方程和几何性质续表性质范围≤x≤≤y≤-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为;短轴B1B2的长为焦距|F1F2|=2c离心率e=∈a,b,c的关系c2=2a2b(0,1)a2-b2-aa-bb三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c.(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1).(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.2.(2012·合肥月考)设P是椭圆x225+y216=1上的点,若F1、F2是椭圆的两个焦点,则|PF1|+|PF2|等于().A.4B.5C.8D.10解析依椭圆的定义知:|PF1|+|PF2|=2×5=10.答案D5.(2011·全国新课标)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为22.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.解析根据椭圆焦点在x轴上,可设椭圆方程为x2a2+y2b2=1(a>b>0). e=22,∴ca=22,根据△ABF2的周长为16得4a=16,因此a=4,b=22,所以椭圆方程为x216+y28=1.答案x216+y28=1考向一椭圆的定义【例1】►(2011·青岛模拟)已知F1、F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为椭圆C上的一点,且PF1→⊥PF2→.若△PF1F2的面积为9,则b=________.[审题视点]关键抓住点P为椭圆C上的一点,从而有|PF1|+|PF2|=2a,再利用PF1→⊥PF2→,进而得解.椭圆上一点P与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF1|·|PF2|;通过整体代入可求其面积等.【训练1】已知△ABC的顶点B,C在椭圆x23+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是().A.23B.6C.43D.12解析由椭圆的定义知:|BA|+|BF|=|CA|+|CF|=2a,∴周长为4a=43(F是椭圆的另外一个焦点).答案C考向二求椭圆的标准方程【例2】►(1)求与椭圆x24+y23=1有相同的离心率且经过点(2,-3)的椭圆方程.(2)已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.[审题视点]用待定系数法求椭圆方程,但应注意椭圆的焦点位置是否确定.运用待定系数法求椭圆标准方程,即设法建立关于a、b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),由题目所给条件求出m、n即可.【训练2】(1)求长轴是短轴的3倍且经过点A(3,0)的椭圆的标准方程.(2)已知椭圆x2a2+y2b2=1(a>b>0)的一个焦点是F(1,0),若椭圆短轴的两个三等分点M,N与F构成正三角形,求椭圆的方程.解(1)若椭圆的焦点在x轴上,设方程为x2a2+y2b2=1(a>b>0), 椭圆过点A(3,0),∴9a2=1,a=3, 2a=3·2b,∴b=1,∴方程为x29+y2=1.若椭圆的焦点在y轴上,设椭圆方程为y2a2+x2b2=1(a>b>0),∴椭圆过点A(3,0),∴02a2+9b2=1,∴b=3,又2a=3·2b,∴a=9,∴方程为y281+x29=1.综上所述,椭圆方程为x29+y2=1或y281+x29=1.(2)由△FMN为正三角形,则c=|OF|=32|MN|=32×23b=1.∴b=3.a2=b2+c2=4.故椭圆方程为x24+y23=1.考向三椭圆几何性质的应用【例3】►(2011·北京)已知椭圆G:x24+y2=1.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.(1)求椭圆G的焦点坐标和离心率;(2)将|AB|表示为m的函数,并求|AB|的最大值.[审题视点](1)由椭圆方程可直接求出c,从而求出离心率.(2)可设出直线方程与椭圆方程联立得一元二次方程,由弦长公式列出|AB|长的表达式从而求出|AB|的最大值.由y=kx-m,x2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第九篇 解析几何第5讲 椭 圆课件 理 课件

您可能关注的文档

星河书苑+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部