第2讲填空题的解题方法与技巧题型特点概述填空题是高考试卷中的三大题型之一,和选择题一样,属于客观性试题.它只要求写出结果而不需要写出解答过程.在整个高考试卷中,填空题的难度一般为中等.不同省份的试卷所占分值的比重有所不同.1.填空题的类型填空题主要考查学生的基础知识、基本技能以及分析问题和解决问题的能力,具有小巧灵活、结构简单、概念性强、运算量不大、不需要写出求解过程而只需要写出结论等特点.从填写内容看,主要有两类:一类是定量填写,一类是定性填写.2.填空题的特征填空题不要求写出计算或推理过程,只需要将结论直接写出的“求解题”.填空题与选择题也有质的区别:第一,表现为填空题没有备选项,因此,解答时有不受诱误干扰之好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活.从历年高考成绩看,填空题得分率一直不很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分.因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.3.解填空题的基本原则解填空题的基本原则是“小题不能大做”,基本策略是“巧做”.解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法、合情推理法等.解题方法例析题型一直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.例1在等差数列{an}中,a1=-3,11a5=5a8-13,则数列{an}的前n项和Sn的最小值为________.思维启迪计算出基本量d,找到转折项即可.解析设公差为d,则11(-3+4d)=5(-3+7d)-13,∴d=59.∴数列{an}为递增数列.令an≤0,∴-3+(n-1)·59≤0,∴n≤325, n∈N*.∴前6项均为负值,∴Sn的最小值为S6=-293.答案-293探究提高本题运用直接法,直接利用等差数列的通项公式判断出数列的项的符号,进而确定前几项的和最小,最后利用等差数列的求和公式求得最小值.变式训练1设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7=________.解析方法一S7=7(a1+a7)2=7(a2+a6)2=7×(3+11)2=49.故填49.方法二由a2=a1+d=3,a6=a1+5d=11可得a1=1,d=2,∴a7=1+6×2=13.∴S7=7(a1+a7)2=7×(1+13)2=49.故填49.49题型二特殊值法特殊值法在考试中应用起来比较方便,它的实施过程是从特殊到一般,优点是简便易行.当暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效.例2已知△ABC的三个内角A、B、C的对边分别为a、b、c,且满足(sinA-sinC)(a+c)b=sinA-sinB,则C=_______.思维启迪题目中给出了△ABC的边和角满足的一个关系式,由此关系式来确定角C的大小,因此可考虑一些特殊的三角形是否满足关系式,如:等边三角形、直角三角形等,若满足,则可求出此时角C的大小.解析容易发现当△ABC是一个等边三角形时,满足(sinA-sinC)(a+c)b=sinA-sinB,而此时C=60°,故角C的大小为60°.答案60°探究提高特殊值法的理论依据是:若对所有值都成立,那么对特殊值也成立,我们就可以利用填空题不需要过程只需要结果这一“弱点”,“以偏概全”来求值.在解决一些与三角形、四边形等平面图形有关的填空题时,可根据题意,选择其中的特殊图形(如正三角形、正方形)等解决问题.此题还可用直接法求解如下:由(sinA-sinC)(a+c)b=sinA-sinB可得(a-c)(a+c)b=a-b,整理得,a2-c2=ab-b2,即a2+b2-c2=ab.由余弦定理,得cosC=a2+b2-c22ab=12,所以C=60°.变式训练2在△ABC中,角A、B、C所对的边...