§5导数及其应用(一)真题热身1.(2011·重庆)曲线y=-x3+3x2在点(1,2)处的切线方程为()A.y=3x-1B.y=-3x+5C.y=3x+5D.y=2x解析 y′=-3x2+6x,∴y′|x=1=3.∴曲线y=-x3+3x2在点(1,2)处的切线方程为y-2=3(x-1),即y=3x-1.A2.(2011·福建)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于()A.2B.3C.6D.9解析f′(x)=12x2-2ax-2b, f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0,∴a+b=6.又a>0,b>0,∴a+b≥2ab,∴2ab≤6,∴ab≤9,当且仅当a=b=3时等号成立,∴ab的最大值为9.D3.(2011·江西)若f(x)=x2-2x-4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(-1,0)∪(2,+∞)C.(2,+∞)D.(-1,0)解析由题意知x>0,且f′(x)=2x-2-4x,即f′(x)=2x2-2x-4x>0,∴x2-x-2>0,解得x<-1或x>2.又 x>0,∴x>2.C4.(2011·湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.12C.52D.22解析由题意画出函数图象如图所示,由图可以看出|MN|=y=t2-lnt(t>0).y′=2t-1t=2t2-1t=2(t+22)(t-22)t.当022时,y′>0,可知y在此区间内单调递增.故当t=22时,|MN|有最小值.答案D考点整合1.导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).(3)导数的物理意义:s′(t)=v(t),v′(t)=a(t).2.基本初等函数的导数公式和运算法则(1)基本初等函数的导数公式原函数导函数f(x)=cf′(x)=0f(x)=xn(n∈N*)f′(x)=nxn-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=ax(a>0且a≠1)f′(x)=axlnaf(x)=exf′(x)=exf(x)=logax(a>0且a≠1)f′(x)=1xlnaf(x)=lnxf′(x)=1x(2)导数的四则运算法则①[u(x)±v(x)]′=u′(x)±v′(x).②[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x).③[u(x)v(x)]′=u′(x)v(x)-u(x)v′(x)[v(x)]2(v(x)≠0).(3)复合函数求导复合函数y=f(g(x))的导数和y=f(u),u=g(x)的导数之间的关系为yx′=f′(u)g′(x).3.函数的性质与导数(1)在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;在区间(a,b)内,如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.(2)求可导函数极值的步骤①求f′(x);②求f′(x)=0的根;③判定根两侧导数的符号;④下结论.(3)求函数f(x)在区间[a,b]上的最大值与最小值的步骤①求f′(x);②求f′(x)=0的根(注意取舍);③求出各极值及区间端点处的函数值;④比较其大小,得结论(最大的就是最大值,最小的就是最小值).4.定积分的求法及几何性质(1)定积分的求法①定义法:分割—近似代替—作和—取极限;②利用微积分基本定理:先求被积函数f(x)的原函数F(x),即F′(x)=f(x),再计算F(b)-F(a),即为所求.(2)求定积分的一些技巧①对被积函数要先化简,再求定积分;②求被积函数是分段函数的定积分,依据定积分的性质,分段求定积分,再求和;③对含有绝对值符号的被积函数,要去掉绝对值符号才能求定积分.(3)定积分的几何性质如果在区间[a,b]上的函数f(x)连续且恒有f(x)≥0,那么定积分ʃbaf(x)dx表示由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积.分类突破一、导数的几何意义例1设函数f(x)=ax+1x+b(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.(1)求f(x)的解析式;(2)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.(1)解f′(x)=a-1(x+b)2,于是2a+12+b=3,a-1(2+b)2=0.解得a=1,b=-1,或a=94,b=-83.因为a,b∈Z,故f(x)=x+1x-1.(2)证明已知函数y1=x,y2=1x都是奇函数,所以函数g(x)=x+1x也是奇函数,其图象是以原点为中心的中心对称图形.而f(x)=x-1+1x-1+1...