第五章向量小结与复习第五章向量小结与复习(1)(1)第五章向量小结与复习第五章向量小结与复习(1)(1)阆中东风中学校阆中东风中学校课题:向量小结与复习(1)教学目的:1、了解本章知识网络结构;2、进一步熟悉基本概念及运算律;3、理解重要定理、公式并能熟练应用;4、加强数学应用意识,提高分析问题,解决问题的能力5、认识事物之间的相互转化;6、培养学生的数学应用意识教学重点:突出本章重、难点内容教学难点:通过例题分析突出向量运算与实数运算的区别授课类型:复习课课时安排:1课时教具:多媒体、实物投影仪教学方法:自学辅导法在给出本章的知识网络结构后,列出复习提纲,引导学生补充相关内容,同时加强学生对基本概念、基本运算律、重要定理、公式的熟悉程度。教学过程:一、本章知识结构二、本章重点及难点(1)、本章的重点有向量的概念、运算及坐标表示,线段的定比分点,平移、正弦定理、余弦定理及其在解斜三角形中的应用;(2)、本章的难点是向量的概念,向量运算法则的理解和运用,已知两边和其中一边的角解斜三角形等;(3)、对于本章内容的学习,要注意体会数形结合的数学思想方法的应用。三、本章知识要点1、向量的概念•(1)、向量的基本要素:大小和方向;•(2)、向量的表示:几何表示法,坐标表示法;•(3)、向量的长度:即向量的大小,记作|a|;•(4)、特殊的向量:零向量a=0|a|=0,•单位向量为单位向量|a|=1;•(5)、相等的向量:大小相等,方向相同;•(6)、平行向量(共线向量):方向相同或相反的向量,称为平行向量记作”∥”,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。2、向量的运算(1)向量的运算和性质(表1)运算类型几何方法坐标方法运算性质向量的加法1平行四边形法则2三角形法则向量的减法三角形法则向量的数量乘法1、是一个向量,2、>0时,与a同向;<0时,与a异向;=0时,a=0∥),(2121yyxxbaabba)()(cbacbaACBCAB),(2121yyxxba)(babaBAABABOAOBa),(yxaaa)()(aaa)(baba)(baba3、向量的运算(2)•向量的运算和性质(表2)运算类型几何方法坐标方法运算性质向量的数量积是一个数1、或时=0,2且时,ba0a0bba0a0b||||cos,ababab2121yyxxbaabba()()()abababcbcacba)(22||aa22||yxa||||||baba4、重要定理和公式(1)•(1)平面向量基本定理e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量a,有且仅有一对实数1,2使a=1e1+2e2•(2)两个向量平行的充要条件a∥ba=λbx1y2-x2y1=0•(3)两个向量垂直的充要条件a⊥ba·b=0x1y1+x2y2=04、重要定理和公式(2)(4)线段的定比分点公式设点P分有向线段所成的比为λ,即=λ,点P的坐标为(x,y),则当λ=1时,得中点公式:PP12PP.1,12121yyyxxx.2,22121yyyxxx4、重要定理和公式(3)(5)平移公式设点按向量平移后得到点,则=+或,曲线按向量移后所得的曲线的函数解析式为:(6)正、余弦定理正弦定理:余弦定理:),(kha),(yxPPOOPa.,kyyhxx)(xfy),(kha)(hxfky.2sinsinsinRCcBbAaAbccbacos2222Bacacbcos2222Cabbaccos2222四、讲解范例:例1、在四边形ABCD中·=·=·=·,证明:四边形ABCD是矩形。分析:要证明四边形ABCD是矩形,可以先证四边形ABCD为平行四边形,再证明其一组邻边互相垂直为此我们将从四边形的边的长度和位置两方面的关系来进行思考证明:设=a,=b,=c,=d,则 a+b+c+d=O∴a+b=-(c+d)两边平方得|a|2+2a·b+|b|2=|c|2+2c·d+|d|2,又a·b=c·d∴|a|2+|b|2=|c|2+|d|2(1)BCABCDDACDDABCCDABDABCAB同理|a|2+|d|2=|b|2+|c|...