阶段专题复习第 18 章请写出框图中数字处的内容:①_______________ ;② ___________________ ;③_____ ;④ ___________ ;⑤___________________________________.对边平行且相等对角相等,邻角互补相等平行且相等对角线互相平分的四边形是平行四边形考点 1 平行四边形的性质 【知识点睛】 平行四边形边、角、对角线的性质1. 平行四边形的对边平行且相等 .2. 平行四边形的对角相等,邻角互补 .3. 平行四边形的对角线互相平分 .【例 1 】 (2012· 徐州中考 ) 如图, C 为 AB的中点 . 四边形 ACDE 为平行四边形, BE 与CD 相交于点 F.求证: EF=BF.【思路点拨】将线段 EF 和 BF 分别放到△ DEF 和△ CBF 中,通过证明这两个三角形全等,即可得出 EF=BF.【自主解答】 四边形 ACDE 为平行四边形,∴ED=AC , ED∥AC.∴∠D=∠FCB ,∠ DEF=∠B.又 C 为 AB 的中点,∴ AC=BC.∴ED=BC.在△ DEF 和△ CBF 中,∠D=∠FCB , ED=BC ,∠ DEF=∠B ,∴△DEF≌△CBF.∴EF=BF.【中考集训】1.(2013· 黔西南中考 ) 已知□ ABCD 中,∠ A+∠C=200° ,则∠ B 的度数是 ( )A.100° B.160° C.80° D.60°【解析】选 C. ∠A+∠C=200° ,∠ A=∠C ,∴∠ A=100°.又 AD∥BC ,∴∠ A+∠B=180° ,∴∠ B=80°.2.(2013· 滨州中考 ) 在□ ABCD 中,点 O 是对角线 AC , BD 的交点,点 E 是边 CD 的中点,且 AB=6 , BC=10 ,则OE= .【解析】 四边形 ABCD 是平行四边形,∴ BO=DO.又 E 是边 CD 的中点,∴ OE 是△ DBC 的中位线 . BC=10 ,∴ OE= BC=5.答案: 5123.(2012· 成都中考 ) 将□ ABCD 的一边 BC 延长至 E ,若∠ A=110° ,则∠ 1= .【解析】在□ ABCD 中,∠ BCD=∠A=110° ,∴∠ 1=180°-∠BCD=70°.答案: 70°4.(2012· 广安中考 ) 如图,四边形 ABCD 是平行四边形,点 E在 BA 的延长线上,且 BE=AD ,点 F 在 AD 上, AF=AB. 求证:△ AEF≌△DFC.【证明】因为四边形 ABCD 是平行四边形,所以AB=CD , AB∥CD. AB∥CD ,∴∠ EAF=∠D. AF=AB , AB=CD ,∴ AF=CD. BE=AD , AB=AF ,∴ AE=DF.在△ AEF 和△ DFC 中, AF=CD ,∠ EAF=∠D , AE=DF ,∴△AEF≌△DFC.考点 2 平行四边形的判定 【知识点睛】 【例 2 】 (2013· ...