§6.3.一次函数的图象(一)宿州十一中 顾 玲一、学习目标(一)知识与技能1、理解函数图象的概念。2、经历作图过程,初步了解作函数图象的一般步骤。3、理解一次函数的代数表达式与图象之间的对应关系。4、能较熟练作出一次函数的图象。(二)、方法与过程1、已知解析式作函数的图象,培养学生数形结合的意识和能力。2、在探究活动中发展学生的合作意识和能力。(三)、情感态度与价值观1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。2、加强新旧知识的联系,促进学生新的认知结构的建构。二、教学重点1、能熟练地作出一次函数的图象。2、归纳作函数图象的一般步骤。三 、教学重点理解一次函数的代数表达式与图象之间的对应关系。四、教学过程1、新课导入上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出 x 与 y 的函数关系式,本节课我们研究一下一次函数的图象及性质。2、讲授新课(1)函数图象的概念把一个函数的自变量 x 与对应的因变量 y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。假设在代数表达式 y=2x 中,自变量 x 取 1 时,对应的因变量 y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给 x 的另一个值,对应又一个 y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数 y=2x 的图象,由此看来,函数图象是满足函数表达式的所有点的集合。(2)作一次函数的图象例 1:作出一次函数 y=2x+1 的图象解:列表:x…-2-1012…y=2x+1…-3-1135…描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。连线:把这些点依次连接起来,得到 y=2x+1 的图象(如图 6-4),它是一条直线。 小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。做一做(1)作出一次函数 y=-2x+5 的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式 y=-2x+5。列表:x…-2-1012…y=-2x+5…97531…描点:以表中各组对应值作为点的坐标,在直角坐标第内描出相应的点。连线:把这些点依次连接起来,得到 y=-2x+5 的图象,它是一条直线。图象如下: 在图象上找点 A(3,-1)B(4,-3),当 x=3 时,y=-2×3+5=-1;当 x=4 时,y=-2×4+5=-3。(3,-1),(4,-3)满足关系式 ...