电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数学 第二章 概率 2.3.1 离散型随机变量的数学期望课件 新人教B版选修2 3 课件VIP免费

数学 第二章 概率 2.3.1 离散型随机变量的数学期望课件 新人教B版选修2 3 课件数学 第二章 概率 2.3.1 离散型随机变量的数学期望课件 新人教B版选修2 3 课件数学 第二章 概率 2.3.1 离散型随机变量的数学期望课件 新人教B版选修2 3 课件数学 第二章 概率 2.3.1 离散型随机变量的数学期望课件 新人教B版选修2 3 课件数学 第二章 概率 2.3.1 离散型随机变量的数学期望课件 新人教B版选修2 3 课件
-1-2.3 随机变量的数字特征-2-2.3.1 离散型随机变量的数学期望首 页JICHU ZHISHI基础知识 ZHONGDIAN NANDIAN重点难点SUITANG LIANXI随堂练习课程目标 学习脉络 1.理解离散型随机变量的数学期望的概念. 2.会根据离散型随机变量的分布列求出离散型随机变量的数学期望. 3.掌握离散型随机变量的数学期望的性质及二点分布与二项分布的数学期望公式. 4.能运用离散型随机变量的数学期望解决一些简单的实际问题. JICHU ZHISHI基础知识首 页ZHONGDIAN NANDIAN重点难点SUITANG LIANXI随堂练习一二一、期望 一般地,设一个离散型随机变量 X 所有可能取的值是 x1,x2,…,xn,这些值对应的概率是 p1,p2,…,pn,则 E(X)=x1p1+x2p2+…+xnpn 叫做这个离散型随机变量 X 的均值或数学期望(简称期望). 离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. JICHU ZHISHI基础知识首 页ZHONGDIAN NANDIAN重点难点SUITANG LIANXI随堂练习一二二、常见的数学期望 1.若离散型随机变量 X 服从参数为 p 的二点分布,则 E(X)=p. 2.若离散型随机变量 X 服从参数为 n 和 p 的二项分布,则 E(X)=np. 3.若离散型随机变量 X 服从参数为 N,M,n 的超几何分布,则 E(X)=𝑛𝑀𝑁 . 点拨离散型随机变量的数学期望的性质 若 X,Y 是两个随机变量,且 Y=aX+b,则有 E(Y)=aE(X)+b,即随机变量 X的线性函数的数学期望等于这个随机变量的数学期望 E(X)的同一线性函数.特别地: (1)当 a=0 时,E(b)=b,即常数的数学期望就是这个常数本身. (2)当 a=1 时,E(X+b)=E(X)+b,即随机变量 X 与常数之和的数学期望等于 X 的数学期望与这个常数的和. (3)当 b=0 时,E(aX)=aE(X),即常数与随机变量乘积的数学期望等于这个常数与随机变量的数学期望的乘积. ZHONGDIAN NANDIAN重点难点首 页JICHU ZHISHI基础知识SUITANG LIANXI随堂练习探究一探究二探究三探究四探究一 求离散型随机变量的数学期望 解决求离散型随机变量的数学期望问题的关键是求出分布列,只要求出离散型随机变量的分布列,就可以套用数学期望的公式求解.对于 aX+b型随机变量的数学期望,可以利用数学期望的性质求解,也可以求出 aX+b的分布列,再用定义求解. ZHONGDIAN NANDIAN重点难点首 页JICHU ZHISHI基础知识SUITANG LIANXI随堂练习探究一探究二探究三探究四【典型例题 1】 甲、乙两支排球队进行比赛,约定先胜 3 局者获得比赛的胜利,比赛随即结束....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数学 第二章 概率 2.3.1 离散型随机变量的数学期望课件 新人教B版选修2 3 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部