专题七 客观题的解法 342sincos()552tan()2331A. B. C. D 59435 12mmxxxmmxmmmm已知,,则 例 .考点 5 分析法 11111115 2 (2010)21()()ABCDABCDA B C DEFA BPQADCDEFA ExDQyDPzxyzPEFQxyzxyzyxzzxy如图,正方体的棱长为 ,动点 、 在棱上,动点 , 分别在棱,上,若,,,, , 大于零 ,则四面体的体积 . 与 , , 都有关 . 与 有关,与 , 无关. 与 有关,与 , 无关 . 与 有关,例卷与京,北无关 EFQ:PEFQEFQDP12考虑正、余弦的制约关系和角的范围等特征;,以为四面体的底面第题,点 到底面的距离为高,可以证明的面积是定值,体积切入点就与第题有关了. 221tan124222.1sin xcos xmsinxcosxmtanxmxxxD由于受条件的制约,故 为一确定的值,于是、的值应与 的值无关,进而推知的值与 无关.又,所以,所以解,故析 选 11//12CD A BEFQCDEFQPz因为,,所以,不论 在棱上什么位置,的面积不变,所以体积的大小只与高有关,即与点 的位置有关,也就答案:(1)D (是与有关.2) D 对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后作出判断和选择,是分析法的精髓.注意以下两个方面: (1) 特征分析法——根据题目所提供的信息,如数值特征、结构特征、位置特征等进行快速推理,迅速作出判断的方法,称为特征分析法. (2) 逻辑分析法——通过对四个选择项之间的逻辑关系的分析,达到否定谬误项,选出正 确项的方法,称为逻辑分析法.**.{() |12} A 10 B 15 C 16 (851)DmnmnmnmnmnmnmnMabababNN对于任意两个正整数 , ,定义某种运算“ ※” 如下:当 , 都为正偶数或正奇数时, ※;当 , 中一个为偶数,另一个正奇数时, ※则在此定义下,集合,※,,中的元素个数是.个. 个变式 原创. 个.题个B121212121 112 103948576616,62 5 1 11ababmnmnabmnmnabab 从定义出发,抓住 , 的奇偶性对实行分拆是解决本题的关键,当 , 同奇偶时,根据 ※将分拆两个同奇偶数的和,当 , 一奇一偶时,根据 ※将分拆一个奇数与一个偶数的积,再算其组数即可. 若 , 同奇偶,有,前面的每种可以交换位置,最后一种只有 个点,这时有; 解析...