第第 33 课 课 两角和与差的三角函数两角和与差的三角函数 激活思维激活思维D1.tan2,tan()3tan(2 )151. 1...277ABCD若,则的值为() 激活思维激活思维A2 、若 A 、 B 是三角形△ ABC 的内角并且 (1+tanA)(1+tanB)=2 ,则 A+B 等于 ( )A 、 B 、C 、 D 、45434()4kkZ 激活思维激活思维D23.sinsincoscos2222.[0].[]2221414.[ 2 2].[]22ACCD若,则的取值范围是(),,,, 激活思维激活思维D004.cos72cos36()1.32 6.411..22ABCD 激活思维激活思维5106.sin,sin510已知:,且 、 为锐角,则的值为00005.tan12tan 483 tan12 tan 48 34 :sin() sin coscos sincos()cos cossin sintantantan()1tantan①两角和与差的正弦、余弦、正切二、要点梳理 22222:sin2 2sincos ;2tantan 21tancos2cossin1 2sin2cos1 ②二倍角公式ααααααααααα 22:1cos 2cos;21cos 2sin2③升降幂公式22cos 22cos112sin 1cossin 22αα:1coscos;22④半角公式αα1cossin1costan 21cos1cossinααααααα [ 题型 1] 公式的正用 21].tan()3sin 22cos4[例 已知:,求的值.解法 1 : tan()341tan31tan1tan22sin 22cossin 2cos21于是2222tan1tan434111tan1tan555 解法 2 : 2sin 22cossin 2cos21cos(2 )sin(2 ) 1222221tan ()2tan()1 92 3444111 91 951tan ()1tan ()44 【例 2 】 求值0sin9cos15 sin 6cos9sin15 sin 6 解:原式 = sin(156 )cos15 sin 6cos(156 )sin15 sin 6 sin15 cos6cos15 sin6cos15 sin6cos15 cos6sin15 sin6sin15 sin6 tan15tan(4530 ) tan 45tan30231tan 45 tan30 [ 题型 2] 公式的逆用【例 3 】化简00sin50 (13 tan10 )解:原式sin50 (cos1...