金融数学之心得 金融数学学习心得 摘要。金融数学是新兴的一门边缘学科,广义来说,是用数学理论和方法研究金融经济运动的一门科学。金融数学从上世纪中期兴起,到现在只有短短数十年时间,是一门年轻的科学。作为一门年轻的科学,金融数学还有很大的发展空间,很广泛的发展方向。我们作为它的学习者,对其的发展方向要有准确的认识,了解自己的学习方向。 一、金融数学涵盖的理论 金融数学又称为数理金融学、数学金融学、分析金融学,是以数学和计算机为工具,通过数学建模、理论分析、数值计算等对金融问题进行定量分析,从而揭示金融运行过程中的内在规律并用来指导实践。金融数学领域的研究可以追溯至上世纪中期,经过几十年的理论拓展及论证,目前金融数学已经具备相对的学科独立性,其研究以已经能够在实际金融市场中表现出一定的价值意义。金融数学的理论内容主要有以下几个方面 1.金融数学领域中选择理论的研究。 金融数学中第一次理论突破是由著名数学家马柯维茨完成,在他创建的数学模型中,将金融学中投资组合风险度量通过方差形式实现,同时首次定义了有效边界在投资组合中的意义。根据马柯维茨的选择理论原理,只有在个人的无差异曲线与投资组合的有效边界的切点才能够在个人投资组合中获取最为正确的决策,从而将金融市场中不通过类型资产的合理持有比例进行划分。目前,选择理论依然在金融市场中具有相当的实践性意义。 2.金融数学领域中 capm 理论的研究。 多位著名数学、经济领域研究学者、教授在选择理论基础之上将金融市场中具有均衡意义的资产价值形成机制,即 capm理论。该理论中表述了金融证券的投资过程中,在投资收益与投资风险存在一定的相互关系;金融市场中的投资人员在进行投资证券时候所采用的投资组合能够体现出效用函数与证券市场第 1 页 共 3 页线的切点关系。capm 理论就是通过切点的求证获取金融市场中的斜率项。目前,capm 主要应用在金融股价、投资绩效测定以及金融资本预算等方面,对金融市场的发展有着切实的指导性意义。 3.金融数学领域中“b-s”模型(black-scholcs 期权定价公式)的研究。 该理论公式将期权定价合理性从金融投资者偏好中释放,通过风险中性原则进行论证。black-scholcs 期权定价公式在金融市场中表现出来的实用价值能够对金融市场中各项衍生产品进行定价,成为金融产品研发的催化手段。对标的股票支付红利的期权通过定价公式计算;提出了更贴近现实的可变利率的欧式...