概率论与数理统计教案 第六章 样本与抽样分布 6 第六章 样本及抽样分布 【授课对象】理工类本科二年级 【授课时数】8学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、理解总体、个体和样本的概念; 2、了解经验分布函数和直方图的作法,知道格林汶科定理; 3、理解样本均值、样本方差和样本矩的概念并会计算; 4、理解统计量的概念,掌握几种常用统计量的分布及其结论; 5、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布, F 分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【授课内容及学时分配】 §6.0 前 言 5分钟 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象的统计规律性的一门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 §6.1 随机样本 25分钟 一、总体与样本 概率论与数理统计教案 第六章 样本与抽样分布 7 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究华北工学院男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。 但在数理统计里,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标 X (可以是向量)和该数量指标 X 在总体的分布情况。在上述例子中 X 是表示灯泡的寿命或男大学生的身高和体重。在实验中,抽取了若干个个体就观察到了 X 的这样或那样的数值,因而这个数量指标 X 是一个随机变量(或向量),而 X 的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把...