数量关系之抽屉原理 排列组合问题是公务员考试当中经常考察的一种题型,也是很多考生理解的不是很清晰的一类题型,所以通过几篇文章详细分析一下排列组合问题的解题思路和解题方法,希望对考生的备考有所帮助。 解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。下面介绍几种常用的解题方法和策略。 一、排列和组合的概念 排列:从 n 个不同元素中,任取 m 个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。 组合:从 n 个不同元素种取出 m 个元素拼成一组,称为从 n 个不同元素取出 m 个元素的一个组合。 二、七大解题策略 1 .特殊优先法 特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。 例:从 6 名志愿者中选出 4 人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( ) (A) 280 种 (B)240 种 (C)180 种 (D)96 种 正确答案:【B】 解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是"特殊"位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4 种不同的选法,再从其余的5 人中任选 3 人从事导游、导购、保洁三项不同的工作有A(5,3)=10 种不同的选法,所以不同的选派方案共有 C(4,1)×A(5,3)=240 种,所以选 B。 2 .科学分类法 问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。 例:某单位邀请10 为教师中的6 为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。 A.84 B.98 C.112 D.140 正确答案【D】 解析:按要求:甲、乙不能同时参加分成以下几类: a.甲参加,乙不参加,那么从剩下的8 位教师中选出 5 位,有C(8,5)=56 种; b.乙参加,甲不参加,同(a)有56 种; c.甲、乙都不参加,那么从剩下的8 位教师中选出 6 位,有C(8,6)=28 种。 故共...