1 / 15 二次根式小结与复习基础盘点 1.二次根式的定义:一般地,我们把形如a (a ___0)的式子叫做二次根式,“”称为二次根式. 定义诠释:(1)二次根式的定义是以形式界定的,如4 是二次根式; (2)形如ab(a ≥0)的式子也叫做二次根式; (3)二次根式a 中的被开方数a ,可以是数,也可以是单项式、多项式、分式,但必须满足a ≥0. 2.二次根式的基本性质 (1)a _____0(a ___0);(2) 2a=_____(a ___0);(3)aa 2=0_ __ _ _0_ __ _ _aa; (4)ab _________(a ___0,b ___0);(5)ab _________(a ___0,b ___0). 3.最简二次根式必须满足的条件为:(1)被开方数中不含___;(2)被开方数中所有因式的幂的指数都_____. 4.二次根式的乘、除法则: (1)乘法法则:a · b =______(a ___0,b ___0);(2)除法法则:ab_______(a ___0,b ___0). 复习提示:(1)进行乘法运算时,若结果是一个完全平方数,则应利用 aa200aaaa进行化简,即将根号内能够开的尽方的数移到根号外; (2)进行除法运算时,若除得的商的被开方数中含有完全平方数因数,应运用积的算术平方根的性质将其进行化简. 5.同类二次根式:几个二次根式化成______后,如果_____相同,这几个二次根式就叫做同类二次根式. 6.二次根式的加减法则:二次根式加减时,可以先将二次根式化成_____,然后把_______进行合并. 复习提示:(1)二次根式的加减分为两个步骤:第一步是_____,第二步是____,在合并时,只需将根号外的因式进行加减,被开方数和根指数不变; (2)不是同类二次根式的不能合并,如:53 ≠8 ; 2 / 15 (3)在求含二次根式的代数式的值时,常用整体思想来计算. 7.二次根式的混合运算 (1)二次根式的混合运算顺序与实数中的运算顺序一致,也是先_,再__,最后__,有括号的先_内的. 复习提示:(1)在运算过程中,有理数(式)中的运算律,在二次根式中仍然适用,有理数(式)中的乘法公式在二次根式中仍然适用; (2)二次根式的运算结果可能是有理式,也可能是二次根式,若是二次根式,一定要化成最简二次根式. 8.二次根式的实际应用 利用二次根式的运算解决实际问题,主要从实际问题中列出算式,然后根据运算的性质进行计算,注意最后的结果有时需要取近似值. 1 二次根式有意义的条件 例1 若式子43x在实数范围内有意...