摘要数学思想方法在解题时常常会被提到,它是数学理论的本质认识,因此学生要想学好数学,必须知道并且运用它。其中转化与化归就是一个重要的数学思想方法,它可以帮助学生更好,更快地解决数学问题。 该文讲述了转化与化归的原则和策略,方便了学生对它的掌握和理解。其中学生最容易接受的是简单化、熟悉化、直观化原则。学生最容易掌握的是极端化、标准化和正难则反原则。在解题过程中,学生头脑里最先想到的是用什么解题策略。复杂到简单、陌生到熟悉、抽象到具体策略是学生在学习过程中自然能够想到的。学生需要进行培养和训练的是一般到特殊、数形结合和动静转化策略。 高中数学几大模块的解题研究中,都有渗透转化与化归思想。该研究主要介绍了函数、数列、不等式、立体几何和圆锥曲线的模块研究,这些模块是高中最重要且最有难度的内容,所以具有很大的研究意义。最后该文总结了学生转化与化归思想能力的培养策略。关键词 : 转化与化归 高中数学 培养策略 I ABSTRACTMathematical thinking method is often mentioned in the question solving, it is the nature of mathematical theory, so students want to learn mathematics, must know and use it. Among them, transformation and transformation is an important mathematical thinking method, which can help students solve mathematical problems better and faster.This article introduced the transformation and the transformation tenet and the strategy, facilitates the student to grasp and the understanding. Among them, the principles of simplification, familiarity and intuition are most easily accepted by students. The easiest things for students to master are extremity, standardization, and the principle of right versus wrong. In the problem solving process, the first thing that comes to students' mind is what problem solving strategy to use. Complex to simple, unfamiliar to familiar, abstract to concrete strategy is the students in the learning process naturally can think of. Students need to be trained in general to special, combination ...