多边形的外角和教学设计一.学情分析在前面的学习中,学生已经掌握了多边形的内角和公式,对如何探究内角和的问题有了一定的认识,.因此对于学习本节内容的知识条件已经成熟,由于上节课学生掌握得不错,所以我考虑把这节课设计成一节探索活动课.二教材分析本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.三教学目标【知识与技能】经历探索多边形的外角和公式的过程;会应用公式解决问题;【过程与方法】培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.四.教学重难点【教学重点】多边形外角和定理的探索和应用.【教学难点】灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.五教学过程设计第一环节创设情境,引入新课问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。思考下列问题:(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出 Z1+Z2+z3+Z4+Z5 的结果吗?你是怎样得到的?(学生小组讨论,完成)设计意图:利用生活情境,设计问题,激发学生的兴趣和积极性,同时给学生一定的思考空间。第二环节问题解决对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。小亮是这样思考的:如图所示,过平面内一点 0 分别作与五边形 ABCDE各边平行的射线 OA',OB',OU,0D‘,0E',得到 za,zp,ZY,zS,z6,其中,za=z1,zp=z2,ZY=Z3,zS=z4,z0=z5.问题引申:1.如果广场的形状是六边形那么还有类似的结论吗?2.如果广场的形状是八边形呢?设计意图...