电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数学发展历史

数学发展历史_第1页
1/8
数学发展历史_第2页
2/8
数学发展历史_第3页
3/8
数学在提出问题和解答问题方面,已经形成了一门特殊的科学。在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。数学家门为了解答这些问题,要花费较大力量和时间。尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。◊公元前 600 年以前◊据中国战国时尸佼著《尸子》记载:〃古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前 2500 年前,已有"圆、方、平、直"等形的概念。公元前 2100 年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。公元前 2000 年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。公元前约 1950 年,巴比伦人能解二个变数的一次和二次方程,已经知道〃勾股定理〃。◊公元前 600—1 年^公元前六世纪,发展了初等几何学(古希腊泰勒斯)。约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。公元前六世纪,印度人求出 V2=1.4142156。公元前 462 年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊巴门尼德、芝诺等).。公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数学发展历史

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部