第二章自动变速器的结构和工作原理第一节液力变矩器的基本原理简介液力变矩器是一种液力传动装置,它以液体为工作介质来进行能量转换。它的能量输入部件称为泵轮,以“ B”表示;它和发动机的输出轴相连,并将发动机输出的机械能转换为工作介质的动能。能量输出部件为涡轮,以“T”表示;它将液体的动能又还原为机械能输出。一、液力偶合器的工作原理如图 2-1 所示为液力偶合器原理图。泵轮2 固定在发动机曲轴上,为能量输入端,涡轮4 固定在输出轴 5 上,为输出端。泵轮和涡轮之间有2-4mm的间隙,整个偶合器充满了液体工作介质。1- 发动机曲轴, 2- 泵轮, 3- 偶合器壳体, 4- 涡轮, 5- 偶合器输出轴图 2-1 液力偶合器1、泵轮的运动⑴ 发动机启动后, 曲轴 1 旋转并带动泵轮2 同步旋转。 充满在泵轮叶片间的工作液体随着泵轮同步旋转,这是工作液体绕传动轴的牵连运动。⑵在离心惯性力的作用下,工作液体在绕传动轴坐牵连运动的同时,它沿叶片间的通道从内缘向外缘流动,这是流体和叶片间的相对运动,并于泵轮的外缘流入涡轮。2、涡轮的运动工作液体流入涡轮后,把从泵轮处获得的能量(动量)传递给涡轮,使涡轮旋转。从涡轮外缘(涡轮入口)流入的液体,既随涡轮旋转作牵连运动,又从外缘向内缘(涡轮出口)流动,这是涡轮叶片和流体的相对运动,最后,流体经涡轮内缘又流回泵轮。二、液力偶合器和液力变矩器的能量转换原理1、液力偶合器的能量转换流体在偶合器(变矩器)内的循环流动是一个相当复杂的三维流动,流体与工作叶片间的相互作用也相当复杂。因此,分析这类问题时,在流体力学方面作了一系列假定后,一般用一元流束理论来描述。对于专业性较强的一些描述方式和术语,由于篇幅有限,不作介绍,请读者参考有关著作。当发动机转速(即为泵轮转速)不变时,下述效率公式(1-2 )中的分母是一个常数;随着涡轮转速的升高,传动比变大,效率也高。反之,随着涡轮转速的降低,偶合器的效率也随之下降。需要指出的是,从理论上讲,当n1=n2 时 i=0 ,效率最高。这只有在涡轮轴上没有负载时才可能出现。而实际是,当n1=n2,偶合器的泵轮和涡轮之间没有速度差;泵轮里的液体随泵轮作旋转运动产生的离心惯性力和涡轮里的液体随涡轮运动产生的离心惯性力大小相等而方向相反;偶合器内的液体不流动,也没有环流,偶合器也就失去了能量传递的作用。2、变矩器的能量传递原理(见图2-2 )液力变矩器与液力偶合器在结构上...