电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第七节:圆的内接正多边形

第七节:圆的内接正多边形_第1页
1/8
第七节:圆的内接正多边形_第2页
2/8
第七节:圆的内接正多边形_第3页
3/8
3 .7 圆的内接正多边形 教学目标 :(1)理解正多边形与圆的关系定理; (2)理解正多边形的对称性和边数相同的正多边形相似的性质; (3)理解正多边形的中心、半径、边心距、中心角等概念; 教学重点:理解正多边形的中心、半径、边心距、中心角的概念和性质定理. 教学难点 :对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解. 【知识要点】 1.正多边形的定义: 各边相等,各角也相等的多边形叫做正多边形。 2.正多边形与圆的有关定理 把圆分成n(n≥3)等份: (1)依次连结各分点所得的多边形是这个圆的内接正n边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形; (3)任何正多边形都有一个外接圆与一个内切圆,这两个圆是同心圆。 注意:①依据正多边形与圆的有关定理(1)、(2),只要能将一个圆分成n(n≥3)等份,就可以得到这个圆的内接正n边形及外切正n边形,想一想,你能否利用直尺和圆规作已知圆的内接(或外切)正三角形、正方形、正六边形、正十二边形; ②如何证明任何一个正多边形A1A2A3……An-1An都有一个外接圆呢? 我们可过A1、A2、A3 三点作一个⊙O,分别连结OA1、OA2、OA3,OA4,通过证明△OA1A2≌△OA3A4,得到OA4=OA3=OA2=OA1. 从而点A4 在⊙O 上,同理可证A5、A6……An-1、An其余各点也都在⊙O 上,则可推出此正多边形有一个外接圆。 3. 正多边形的其它性质 (1)正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n边形的中心,边数为偶数的正多边形还是中心对称图形,它的中心就是对称中心。 (2)边数相同的正多边形相似,正多边形的内切圆和外接圆是同心圆。 4. 正多边形的有关计算 正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角。 正n边形的有关计算公式 注意:①同一个圆的内接正n边形和外切正n边形是相似形,相似比是圆的内接正n边形边心距与它的半径之比。这样,同一个正n 边形的内切圆和外接圆的相似比 ②常用辅助线:连半径,作边心距,由正多边形的半径、边心距和边长构成的直角三角形集中反映了正多边形各元素间的关系,是解计算问题的基本图形,并且正n边形的半径和边心距把正n边形分成 2n个全等的直角三角形。 【例题分析】 1.圆内接正六边形的周长为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第七节:圆的内接正多边形

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部