指定课题:圆锥曲线与方程(起始课)计数:刘玉林一、教学设计1.教学内容解析《圆锥曲线与方程》安排在普通高中人教 A 版选修 2-1 中.教材通过章引言介绍了圆锥曲线的名称由来、发展历史、实际用途和坐标方法,主要说明圆锥曲线是什么、为什么要学习圆锥曲线和怎样学习圆锥曲线.尤其是着重说明了类比研究直线与圆的坐标法,研究圆锥曲线的基本套路.同时教材又进一步通过【探究与发现】介绍了Dandelin 双球证法,说明了为什么二次函数的图象是抛物线;通过【信息技术应用】介绍了用《几何画板》探究椭圆的轨迹;通过【阅读与思考】介绍了圆锥曲线的光学性质及其应用.基于教材对本章内容设置的前后一致逻辑连贯的结构顺序,作为本章起始课,拟定以了解圆锥曲线的发展过程和理解圆锥曲线的心理过程为基本线索,力图为学生构建前后一致逻辑连贯的学习过程,使学生在领悟圆锥曲线名称由来、广泛应用和研究方法的过程中学会思考,并侧重于椭圆定义的探究及初步应用.根据以上分析,本节课的教学重点确定为教学重点:椭圆的定义探究及初步应用(Dandelin 双球证法).2.学生学情诊断首先,学生在《数学 2》中学习了研究直线与圆的坐标法,初步具备了运用代数方法研究几何问题的意识,初步感受了数形结合的基本思想,对椭圆、抛物线和双曲线的概念也仅仅停留在直观感性认识的层面上.因此,圆锥曲线作为学生再度理解坐标法和进一步感悟数形结合思想的学习内容,是螺旋上升的过程中掌握解析几何思想方法的一个突破口.其次,本节课授课班级是我校实验班,尽管数学基础总体水平较好,但如何将几何问题代数化仍然是多数学生所面临的难题.为此,在起始课中,为降低难点,只让学生初步尝试给定数据的具体椭圆方程的推导方法,而将引发学生推导椭圆标准方程一般式作为后继学习内容.根据以上分析,本节课的教学难点确定为教学难点:具体条件下椭圆方程的推导和化简;坐标法的应用.3.教学目标设置(1)通过动态演示平面与圆锥面的截线,学生经历从具体情境中抽象出椭圆、双曲线、抛物线模型的过程,感知圆锥曲线的来由;(2)通过丰富多彩的实例,学生体会圆锥曲线应用的广泛性,数与形的辩证统一的关系和圆锥曲线的内在美、和谐美和统一美,感受学习圆锥曲线的理由;(3)借助展板动手操作和类比圆的定义,学生探究椭圆的定义,能用文字和符号语言描述椭圆的定义,会用 Dandelin 双球证明截口曲线为椭圆的情形,感悟圆锥曲线学法的因由.(4)...