电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

CRC的全称为循环冗余校验

CRC的全称为循环冗余校验_第1页
1/12
CRC的全称为循环冗余校验_第2页
2/12
CRC的全称为循环冗余校验_第3页
3/12
CRC 的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP 文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。 差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC 的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。 利用CRC 进行检错的过程可简单描述为:在发送端根据要传送的k 位二进制码序列,以一定的规则产生一个校验用的r 位监督码(CRC 码),附在原始信息后边,构成一个新的二进制码序列数共 k+r 位,然后发送出去。在接收端,根据信息码和CRC 码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。 1 代数学的一般性算法 在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为 1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。 设编码前的原始信息多项式为P(x),P(x)的最高幂次加 1 等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC 多项式为R(x);编码后的带CRC 的信息多项式为T(x)。 发送方编码方法:将 P(x)乘以xr(即对应的二进制码序列左移 r 位),再除以G(x),所得余式即为R(x)。用公式表示为 T(x)=xrP(x)+R(x) 接收方解码方法:将 T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。 举例来说,设信息码为1100,生成多项式为1011,即 P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为 xrP(x) x3(x3+x2) x6+x5 x -------- = ---------- = -------- = (x3+x2+x) + -------- G(x) x3+x+1 x3+x+1 x3+x+1 即 R(x)=x。注意到G(x)最高幂次 r=3,得出 CRC 为010。 如果用竖式除法,计算过程为 1110 ------- 1011 /1100000 (1100左移 3位) 1011 ---- 1110 1011 ----- 1010 1011 ----- 0010 0000 ---- 010 因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010 如果传输无误, T(x) x6+x5+x ------ = --------- = x3+x2+x, G(x) x3+x+1 无余式。回头看一下上面的竖式除法,如果被除...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

CRC的全称为循环冗余校验

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部