1 《矩形的性质》教案设计 一、教学目标: 1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 3.渗透运动联系、从量变到质变的观点. 二、重点、难点 1.重点:矩形的性质. 2.难点:矩形的性质的灵活应用. 3.难点的突破方法: 矩形是在平行四边形的前提下定义的.从定义出发,首先应该肯定,矩形是平行四边形,但它是特殊的平行四边形特殊之处就是有一个角是直角.因此在教学在我们采用运动方式探索矩形的概念及性质,如用多媒体或教具演示,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系. 通过教学还要使学生明确:(1)矩形是特殊的平行四边形,(2)矩形只比平行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的行四边形是矩形”来定义矩形;(3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性). 从边、角、对角线方面(可继续演示教具),让学生观察或度量猜想矩形的特殊性质. (1)边:对边与平行四边形性质相同,邻边互相垂直(与性质 1 等价); (2)角:四个角是直角(性质 1); (3)对角钱:相等且互相平分(性质 2). 引导学生利用矩形与平行四边形的从属关系、矩形的概念以及全等三角形的知识,规范证明两条性质及推论.并指出:推论叙述了直角三角形中线段的倍分关系,是直角三角形很重要的一条性质,在求线段长或求线段倍分关系时,常用到这个结论. 矩形 ABCD 的两条对角线 AC,BD 把矩形分成四个等腰三角形,即△AOB,△BOC,△COD 和△DOA.让学生证明后熟记这个结论,以便在复杂图形中尽快找到解题的思路. 三、例题的意图分析 例 1 是教材 P104 的例 1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例 2 与例 3 都是补充的题目,其中通过例 2 的讲解是想让学生了解:(1)因为矩形四个角都是直角, 2 因 此 矩 形 中 的 计 算 经 常 要 用 到 直 角 三 角 形 的 性 质 , 而 利 用 方 程 的 思 想 , 解 决 直角 三 角 形 中 的 计 算 , 这 是 几 何 计 算 题 中 常 用 的 方 法 ; ( 2) “直 角 三 角 形 斜 边 上的 高 ”是 一 个 基 本 图 形 , 利 用 面 积 公 式 ...