电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

傅里叶级数下连续小推力译文

傅里叶级数下连续小推力译文_第1页
1/12
傅里叶级数下连续小推力译文_第2页
2/12
傅里叶级数下连续小推力译文_第3页
3/12
精品文档---下载后可任意编辑for Trajectory Dynamics前言摘要A novel method to evaluate the trajectory dynamics of low-thrust spacecraft is developed.The thrust vectorcomponents are represented as Fourier series in eccentric anomaly, and Gauss’s variational equations are averagedover one orbit to define a set of secular equations.These secular equations are a function of only 14 of the thrustFourier coefficients, regardless of the order of the original Fourier series, and are sufficient to accurately determine alow-thrust spiral trajectory withsignificantly reduced computational requirements as compared with integration ofthe full Newtonian problem. This method has applications to low-thrust spacecraft targeting and optimal controlproblems.一种新的求解小推力轨道动力学的方法被开发出来了。推力向量的各坐标用偏近点角表示为傅里叶级数,并且将高斯变分方程平均到整个轨道上来提高久期方程组的精度。这些久期方程组仅仅是 14 个推力傅里叶系数的函数而忽略初始傅里叶级的次数,这些方程能够精确有效的解决小推力螺旋轨道问题,且与通常的牛顿问题的积分方法相比能大大减少计算量。这一方法应用在小推力航天器的目标确定和最优控制问题中。I. Introduction 引言LOW-THRUST propulsion systems offer an efficient optionfor many interplanetaryand Earth-orbit missions. However,optimal control of these systems can pose a difficult designchallenge. Analytical or approximate solutions exist for severalspecial cases of optimal low-thrust orbit-transfer problems, butthe generalcontinuous-thrust problem requires full numericalintegration of each initial condition and thrust profile. The trajectoryis highly sensitive to these variables; thus, the optimal control lawover tens or hundreds of orbits of a spiral trajectory is often difficult todetermine.小推力推动系统为许多星际航行和地球轨道任务提供了一种高效的新选择。但是这种系统却对最优化控制提出了新的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

傅里叶级数下连续小推力译文

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部