电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

小升初奥数专题第八讲比和比例关系

小升初奥数专题第八讲比和比例关系_第1页
1/18
小升初奥数专题第八讲比和比例关系_第2页
2/18
小升初奥数专题第八讲比和比例关系_第3页
3/18
第八讲 比和比例关系 比和比例,是小学数学中的最后一个内容,也是学习更多数学知识的重要基础.有了“比”这个概念和表达方式,处理倍数、分数等问题,要方便灵活得多.我们希望,小学同学学完这一讲,对“除法、分数、比例实质上是一回事,但各有用处”有所理解. 这一讲分三个内容: 一、比和比的分配; 二、倍数的变化; 三、有比例关系的其他问题. 8.1 比和比的分配 最基本的比例问题是求比或比值.从已知一些比或者其他数量关系,求出新的比. 例1 甲、乙两个长方形,它们的周长相等.甲的长与宽之比是3∶2,乙的长与宽之比是7∶5.求甲与乙的面积之比. 解:设甲的周长是2. 甲与乙的面积之比是 答:甲与乙的面积之比是864∶875. 作为答数,求出的比最好都写成整数. 例2 如右图,ABCD 是一个梯形,E 是AD 的中点,直线 CE 把梯形分成甲、乙两部分,它们的面积之比是10∶7. 求上底 AB 与下底 CD 的长度之比. 解:因为E 是中点,三角形CDE 与三角形CEA 面积相等. 三角形ADC 与三角形ABC 高相等,它们的底边的比AB∶CD=三角形ABC 的面积∶三角形ADC 的面积 =(10-7)∶(7×2)= 3∶14. 答:AB∶CD=3∶14. 两数之比,可以看作一个分数,处理时与分数计算几乎一样.三数之比,却与分数不一样,因此是这一节讲述的重点. 例 3 大、中、小三种杯子,2 大杯相当于 5 中杯,3 中杯相当于 4 小杯.如果记号表示 2大杯、3 中杯、4 小杯容量之和,求与之比. 解:大杯与中杯容量之比是5∶2=10∶4, 中杯与小杯容量之比是4∶3, 大杯、中杯与小杯容量之比是10∶4∶3. ∶ =(10×2+4×3+3×4)∶(10×5+4×4+3×3) =44∶75. 答:两者容量之比是44∶75. 把 5∶2 与4∶3 这两个比合在一起,成为三样东西之比10∶4∶3,称为连比.例 3 中已告诉你连比的方法,再举一个更一般的例子. 甲∶乙=3∶5,乙∶丙=7∶4, 3∶5=3×7∶5×7=21∶35, 7∶4=7×5∶4×5=35∶20, 甲∶乙∶丙=21∶35∶20. 花了多少钱? 解:根据比例与乘法的关系, 连比后是 甲∶乙∶丙=2×16∶3×16∶3×2 =32∶48∶63. 答:甲、乙、丙三人共花了 429 元. 例 5 有甲、乙、丙三枚长短不相同的钉子,甲与乙 ,而它们留在墙外的部分一样长.问:甲、乙、丙的长度之比是多少? 解:设甲的长度是6 份. ∶x=5∶4. 乙与丙的长度之比是 而甲与乙的长度之比是 6∶5=30∶25. 甲∶乙∶丙=30∶25∶26. 答:甲、乙、丙的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

小升初奥数专题第八讲比和比例关系

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部