精品文档---下载后可任意编辑华师大版九年级下册数学知识点总结第二十六章 二次函数 一、二次函数概念:1、二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零。二次函数的定义域是全体实数。2、二次函数的结构特征:⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是 2。⑵ 是常数,是二次项系数,是一次项系数,是常数项。二、二次函数的基本形式1. 二次函数基本形式:的性质:a 的绝对值越大,抛物线的开口越小。2. 的性质:的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值。向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值。的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值。向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值。精品文档---下载后可任意编辑3. 的性质:4. 的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:向右(h>0)【或左(h<0)】平移 |k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向上(k>0)【或向下(k<0)】平移|k|个单位y=a(x-h)2+ky=a(x-h)2y=ax 2+ky=ax2 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”。 概括成八个字“左加右减,上加下减”。方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值。向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值。的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值。向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值。精品文档---下载后可任意编辑⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中。五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两...