苏科版数学九年级全册知识点梳理 第一章 图形与证明(二) 1 等腰三角形的性质定理: 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一” )。 等腰三角形的两底角相等(简称“等边对等角” )。 等腰三角形的判定定理: 如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边” )。 2 直角三角形全等的判定定理: 斜边和一条直角边对应相等的两个直角三角形全等(简称“HL” )。 角平分线的性质:角平分线上的点到这个角的两边的距离相等。 角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。 直角三角形中,30°的角所对的直角边事斜边的一半。 3 平行四边形的性质与判定: 定义:两组对边分别平行的四边形是平行四边形。 定理1:平行四边形的对边相等。 定理2:平行四边形的对角相等。 定理3:平行四边形的对角线互相平分。 判定— — 从边:1两组对边分别平行的四边形是平行四边形。 2一组对边平行且相等的四边形是平行四边形。 3两组对边分别相等的四边形是平行四边形。 从角: 两组对角分别相等的四边形是平行四边形。 对角线:对角线互相平分的四边形是平行四边形。 矩形的性质与判定: 定义:有一个角的直角的平行四边形是矩形。 定理1:矩形的4个角都是直角。 定理2:矩形的对角线相等。 定理:直角三角形斜边上的中线等于斜边的一半。 判定:1有三个角是直角的四边形是矩形。 2对角线相等的平行四边形是矩形。 菱形的性质与判定: 定义:有一组邻边相等的平行四边形是菱形。 定理1:菱形的4边都相等。 定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。 判定:1四条边都相等的四边形是菱形。 2对角线互相垂直的平行四边形是菱形。 正方形的性质与判定: 正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。 正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。 判定:1有一个角是直角的菱形是正方形。 2有一组邻边相等的平行四边形是正方形。 1.4 等腰梯形的性质与判定 定义:两腰相等的梯形叫做等腰梯形。 定理1:等腰梯形同一底上的两底角相等。 定理2:等腰梯形的两条对角线相等。 判定:1在同一底上的两个角相等的梯形是等腰梯形。 2对角线相等的梯形是等腰梯形。 1.5 中位线 三角形的中位线平行于第三边,并且等于第三边...