摘 要倒立摆系统是典型的不稳定系统,因其具有多变量、强耦合、非线性和快速运动的绝对等特征,倒立摆系统在新型控制理论和方法的效性检验中发挥着十分重要的作用。与此同时对倒立摆系统的稳定性进行研究,不仅在理论方面而且在方法方面,都具有非常重要的意义只要能有效控制倒立摆的平衡点,就能准确揭示包括随动性、鲁棒性、镇定性和跟踪在内的许多控制理论领域的重要研究主题。本研究在区别倒立摆不同的类型、整理学界研究脉络的基础上,对二级倒立摆的控制器进行了设计。随后对其进行结构分析,在分析过程中忽略诸如空气摩擦,摆杆粘连等因素。然后对二级倒立摆的结构进行了分析,运用了基于拉格朗日方法的二级倒立摆数学模型。之后运用最优控制理论对倒立摆数学模型进行展开分析,再基于 MATLAB 中 LQR(linear quadratic regulator)函数,确定了倒立摆闭环控制系统状态反馈向量和最优控制目标函数。在设计二次型控制系统(LQR)时运用 MATLAB 运算及其仿真能力。在 MATLAB 仿真过程中,对加权矩阵 Q 和 R 进行适时调整,在此基础上终结出其动态响应与 Q 和 R 阵之间的基本规律,进而调整其参数,最优化 LQR 控制器的控制效果。结果显示:通过 LQR 控制器,二级倒立摆的稳定性和快速性可以得到优化。关键词:二级倒立摆;最优控制;LQR 控制器;MATLAB 仿真;IAbstractThe inverted pendulum system is a typical unstable system. Due to its multivariate, nonlinear, strong coupling and absolute motion, it plays an important role in the validity test of new control theory and method. At the same time, studying the stability of the inverted pendulum system is of great significance both in theory and in method. As long as the balance point of the inverted pendulum can be effectively controlled, it can accurately reveal important research topics in many control theory fields including follow-up, robustness, stabilization and tracking.In this study, the controller design of the two-stage inverted pendulum was carried out on the basis of distinguishing different types of inverted pendulum and combing the research context. Subsequ...