插值理论及其在海啸潮汐问题中的应用摘要 由于持续发展的科学技术,潮汐发电这一功能为人类提供了前进的动力以及发展的潜力。不仅使用电得到了满足,还能够将化石燃料等非再生能源的使用减少,起到了环境保护的作用,然而极为重要的问题就是研发出新的环保电站。虽然潮汐能的开发前景极为广阔,但是就我国而言,对于潮汐能的开发量不到 1‰,所以这是我国亟待解决的问题。根据星下观测点各主要分潮,利用最小二乘法和切比雪夫多项式法去求解特定星下观测点的潮汐调和常数,得到主要分潮的相关数据,但此时得到的调和常数误差较大,于是通过三次样条拟合函数和克里金插值方法将振幅和迟角进行重新插值拟合,将得到的结果画图,从而得到同潮图。本文以插值理论为基础,研究了提取潮汐调和常数、对验潮站数据 MATLAB 上使用三次样条插值、克里金差值等方法绘制同潮图。海洋潮汐同潮图的绘制需要获取潮汐调和常数,在描述潮汐潮流特征过程中,潮汐调和常数的获取是重要的一项科学研究,直接影响海洋潮汐同潮图的绘制。同潮图的绘制能够帮助人们更好地把握海域分潮振幅以及分潮传播规律,为全方位的海洋开发与利用等工作提供信息参考。关键词 潮汐调和常数 三次样条插值 切比雪夫多项式插值 克里金插值 IInterpolation theory and its application in tsunami tide problemsAbstract Due to the continuous development of science and technology, the tidal power generation function provides the power and potential for human development. Not only the use of electricity is satisfied, but also the use of non-renewable energy can be reduced such as the fossil fuel, which plays an important role in environmental protection. However, the most important problem is to develop new environmental protection power plants. Although the development prospect of tidal energy is very broad, but in China, the development amount of tidal energy is less than 1 ‰, so this is an urgent problem to be solved in China.According to the main tidal components of the observation points under the stars, the least square method and Chebyshev polynomial method are ...