电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

内置开槽涡流发生器的管内流动及强化换热研究

内置开槽涡流发生器的管内流动及强化换热研究_第1页
1/95
内置开槽涡流发生器的管内流动及强化换热研究_第2页
2/95
内置开槽涡流发生器的管内流动及强化换热研究_第3页
3/95
摘 要随着国内外对节能要求不断提高,发展高效的热量传递方法成了研究重点。在传热表面加装涡流发生器作为一种常见的强化换热技术,利用涡流发生器在流道中诱导涡旋来破坏流动边界层,减小换热热阻,提高换热设备效率,因此获得了广泛的研究与应用。本文主要利用数值模拟方法对矩形槽道内加装不同开槽涡流发生器在稳态流动和脉动流动情况下的强化换热及流动阻力特性进行了分析,分析了开槽涡流发生器在不同流动状态下的强化换热机理。本文首先利用在矩形管道中梯形涡流发生器流场信息并结合强化换热光管拟合公式验证计算网格和数值模拟模型,对所使用边界条件及湍流模型进行了验证。利用数值模拟对矩形通道内分别加装开槽、凸型、梯形以及开孔涡流发生器四种情况进行了流动和换热分析,分析了流动速度、温度分布、涡核结构无量纲涡强度及努塞尔特数 Nu 和流动阻力 f,发现开槽涡流发生器在提高最大的管内换热能力的同时还能在一定程度上减小流动阻力损失,增强换热效率,较少能量消耗。其次,本文研究了改变开槽涡流发生器结构对强化换热及流阻特性影响进行分析,计算了在不同进口雷诺数下不同开槽涡流发生器宽度和高度的特性(5个进口雷诺数,5 组开槽宽度,13 组开槽高度,共计 325 个开槽涡流发生器数据),PEC 相较光管最大强化比例为 93%,分析了开槽涡流发生器在稳态流动条件下的强化管内换热机理及涡旋结构,研究发现开槽涡流发生器通过不同剪切层分布形成不同的速度梯度,形成较强的壁面剪切应力,从而影响贴近壁面附近的湍流耗散率分布,影响管内的强化换热性能。研究得到了努塞尔特数(Nu)、摩擦因子(f)、综合换热因子(PEC)等与开槽宽度和深度的预测关系式。最后,本文对开槽涡流发生器结构在脉动流动条件下的复合强化换热特性进行了分析。首先研究了不同进口雷诺数及不同脉动频率下的强化换热特性,发现脉动流动强化换热存在最佳频率,最佳频率为 1Hz;脉动流动能够在稳态流动的基础上继续提高强化换热比例,相比稳态流动,复合脉动流动强化换热比例最高提高 17.52%。脉动流动的强化换热特性与脉动频率、进口速度变化周期相关,在进口速度增加半周期强化换热,在进口速度衰减半周期减弱换热。本文研究表明:开槽涡流发生器能够在流动下游产生多纵向涡旋结构,能够在减小阻力损失的前提下提高换热强度,本文的研究为新型开槽涡流发生器在稳态流动和脉动流动条件下的强化换热和流阻特性及开槽结构优化提供了一定理论指导...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

内置开槽涡流发生器的管内流动及强化换热研究

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部