棱柱的体积教材 上海教育出版社高中二年级第二学期(试验本)授课老师 上海市延安中学 吴瑾辉教学目标(1)理解祖暅原理的含义,理解利用祖暅原理计算几何体体积的方法;(2)在发现祖暅原理的过程中,体会从“平面”到“空间”的类比、猜想、论证的数学思想方法;体会祖暅原理中由“面积都相等”推出“体积相等”的辩证法的思想;(3)在推导棱柱体积公式的过程中,理解从特别到一般,从一般到特别的归纳演绎的数学思想方法是学习数学概念的基本方法;掌握棱柱的体积公式,并会利用棱柱的体积公式解决实际问题;(4)通过介绍我国古代数学家和西方数学家对几何体体积讨论的成果,激发学生的民族自豪感,提高学生学习数学的兴趣.教学重点祖暅原理和棱柱体积公式的推导.教学难点祖暅原理的含义.教学过程一、实际问题引入,说明讨论棱柱体积的必要性:引例:青藏铁路是西部大开发标志性工程,计划投资约 262 亿元,铁路全长 1142 公里,是世界上海拔最高,线路最长,穿越冻土里程最长的高原铁路.针对不同情况的多年冻土,有不同的解决办法与技术.比如埋设热棒或通风管,就是在路堤中埋设直径 30 厘米左右的金属或混凝土横向通风管,可以有效降低路基温度;也可以采纳抛石路基,即用碎块石填筑路基,利用填石路基的通风透气性,隔阻热空气下移,同时吸入冷量,起到保护冻土的作用;在少数极不稳定冻土地段修建低架旱桥,工程效果有保证,但造价高.假设在青藏铁路的某段路基需要用碎石铺垫.已知路基的形状尺寸如图所示(单位:米),问每修建 1 千米铁路需要碎石多少立方米?说明:在生产实际中,常常遇到体积的计算问题,如兴修水利、修建道路需要计算土方,修建粮仓、水池需要计算建材数量和容积.因此有必要讨论几何体的体积计算.上例就是一个直四棱柱的体积计算问题.提出问题:棱柱的体积如何计算?二、探究棱柱体积公式1.从已知到未知,从特别到一般:首先想到已经学过的正方体、长方体的体积公式,然后探究一般棱柱的体积公式.(1)(-棱长);(2)长方体(-长,-宽,-高,-底面积)2.进一步考虑正方体、长方体的体积公式的来龙去脉:(1)请学生谈谈对体积的理解,并小结:几何体占空间部分的大小叫做它的体积.(2) 提问:体积是如何度量的?(类比长度的度量和面积的度量)学生讨论后小结:1)我们在度量长度时,有一个标准,比如说,1 米,1 厘米等;将一段线段用 1厘米来截,看这个线段是 1 厘米的多少个倍...