-专业资料-方程发展史摘要:由于实践的需要方程在古代便已产生了,现在发展成为分支众多的庞大系统,具有悠久的历史。本文概述了方程发展史上上重要概念形成与发展的过程,计算方法与表达形式发展的过程中划时代的事件,介绍了一元方程在中国文化与西方文化中的发展简史,说明了各个时期中西方之间关于一元方程理论的交流与影响。在数学文化的层面上论述了中国古代的一元方程理论会衰落甚至消逝的历史原因,同时,在数学价值观对数学发展推动的意义上,说明了现代高等代数学会在西方产生与发展的历史原因。并论述了在中学的数学教育中让了学生了解关于方程的基本数学史的意义及方程教学应注意的问题。关键词:方程的发展、《九章算术》、天元术、韦达、《分析方法引论》前言:中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。让学生了解有关数学史的知识,有助于帮助他们更好的理解数学,数学不是他们认为的只是从定义和公理推导出来的一系列结论,而是有着丰富思想与独特发展规律的人类文化。我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。对于三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在-专业资料-印度人,西欧人一棒接着一解为解方程的超越方程次方程方人类对方程的研究经历了漫长的岁月,在刘徽的《九式方程》里已经出现次方程—词。方程的英语是 equation,就代数方程是有理方程的意思。分式方程不会有的含义。清朝初年。中国的数学家把 equa 无理方程“相等式”到清朝咸丰九年(公元1859而刘这方面的伟大贡献。在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九...