第二章 函数●网络体系总览●考点目标定位1.理解函数的概念,了解映射的概念.2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.●复习方略指南基本函数:一次函数、二次函数、反比例函数、指数函数与对数函数,它们的图象与性质是函数的基石.求反函数,判断、证明与应用函数的三大特性(单调性、奇偶性、周期性)是高考命题的切入点,有单一考查(如全国 2004 年第 2 题),也有综合考查(如江苏 2004 年第 22 题).函数的图象、图象的变换是高考热点(如全国 2004 年Ⅳ,北京 2005 年春季理 2),应用函数知识解其他问题,特别是解应用题能很好地考查学生分析问题、解决问题的能力,这类问题在高考中具有较强的生存力.配方法、待定系数法、数形结合法、分类讨论等,这些方法构成了函数这一章应用的广泛性、解法的多样性和思维的创造性,这均符合高考试题改革的发展趋势.特别在“函数”这一章中,数形结合的思想比比皆是,深刻理解和灵活运用这一思想方法,不仅会给解题带来方便,而且这正是充分把握住了中学数学的精髓和灵魂的体现.复习本章要注意:1.深刻理解一些基本函数,如二次函数、指数函数、对数函数的图象与性质,对数与形的基本关系能相互转化.2.掌握函数图象的基本变换,如平移、翻转、对称等.3.二次函数是初中、高中的结合点,应引起重视,复习时要适当加深加宽.二次函数与二次方程、二次不等式有着密切的联系,要沟通这些知识之间的内在联系,灵活运用它们去解决有关问题.4.含参数函数的讨论是函数问题中的难点及重点,复习时应适当加强这方面的训练,做到条理清楚、分类明确、不重不漏.5.利用函数知识解应用题是高考重点,应引起重视.12.1 函数的概念●知识梳理1.函数的定义:设 A、B 是非空的数集,如果按某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合B 的一个函数,记作 y=f(x),x∈A,其中 x 叫做自变量.x 的取值范围 A 叫做函数的定义域;与x 的值相对应的 y 的...