3.3 等差数列的前 n 项和(1)教学目的:1.掌握等差数列前 n 项和公式及其获取思路. 2.会用等差数列的前 n 项和公式解决一些简单的与前 n 项和有关的问题 教学重点:等差数列 n 项和公式的理解、推导及应教学难点:灵活应用等差数列前 n 项公式解决一些简单的有关问题授课类型:新授课课时安排:1 课时教 具:多媒体、实物投影仪内容分析: 本节是在学习了等差数列的概念和性质的基础上,使学生掌握等差数列求和公式,并能利用它求和解决数列和的最值问题等差数列求和公式的推导,采用了倒序相加法,思路的获得得益于等到差数列任意的第 k 项与倒数第 k 项的和都等于首项与末项的和这一性质的认识和发现通过对等差数列求和公式的推导,使学生能掌握“倒序相加”数学方法教学过程:一、复习引入:首先回忆一下前几节课所学主要内容:1.等差数列的定义: -=d ,(n≥2,n∈N )2.等差数列的通项公式: (或=pn+q (p、q 是常数))3.几种计算公差 d 的方法:① d=- ② d= ③ d=4.等差中项:成等差数列5.等差数列的性质: m+n=p+q (m, n, p, q ∈N )6.数列的前 n 项和:数列中,称为数列的前 n 项和,记为.“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:“1+2+3+…+100=5050教师问:“你是如何算出答案的?高斯回答说:因为 1+100=101;2+99=101;…50+51=101,所以101×50=5050” 这个故事告诉我们:1(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西 (2)该故事还告诉我们求等差数列前 n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法 二、讲解新课: 如图,一个堆放铅笔的 V 形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放 120 支,这个 V 形架上共放着多少支铅笔?这是一堆放铅笔的 V 形架,这形同前面所接触过的堆放钢管的示意图,看到此图,大家都会很快捷地找到每一层的铅笔数与层数的关系,而且可以用一个式子来表示这种关系,利用它便可以求出每一层的铅笔数.那么,这个 V 形架上共放着多少支铅笔呢?这个问题又该如何解决呢?经过分析,我们不难看出,这是一个等差数求和问题?这个问...