电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2014高中数学 3.2.2-1应用已知函数模型解决实际问题教案 新人教A版必修1

2014高中数学 3.2.2-1应用已知函数模型解决实际问题教案 新人教A版必修1_第1页
1/6
2014高中数学 3.2.2-1应用已知函数模型解决实际问题教案 新人教A版必修1_第2页
2/6
2014高中数学 3.2.2-1应用已知函数模型解决实际问题教案 新人教A版必修1_第3页
3/6
§3.2.2 函数模型的应用实例第一课时 应用已知函数模型解决实际问题 【教学目标】 能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.【教学重难点】1.教学重点:运用一次函数、二次函数模型解决一些实际问题.2. 教学难点:将实际问题转变为数学模型.【教学过程】(一)创设情景,揭示课题引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如 何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”. 这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.比例激发学生学习兴趣,增强其求知欲望.可引导学生运用方程的思想解答“鸡兔同笼”问题.(二)结合实例,探求新知.例 1 某农家旅游公司有客房 300 间,每间日房租为 20 元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加 2 元,客房出租数就会减少 10 间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?引导学生探索过程如下:1)本例涉及到哪些数量关系?2)应如何选取变量,其取值范围又如何?3)应当选取何种函数模型来描述变量的关系?4)“总收入最高”的数学含义如何理解?根据老师的引导启发,学生自主,建立恰当的函数模型,进行解答,然后交流、进行评析.[略解:]设客房日租金每间提高 2 x 元,则每天客房出租数为 300-10 x ,由 x >0,且 300-10 x >0 得:0< x <30设客房租金总上收入 y 元,则有:y =(20+2 x )(300-10 x ) =-20( x -10)2 + 8000(0< x <30)由二次函数性质可知当 x =10 时,maxy=8000.所以当每间客房日租金提高到 20+10×2=40 元时,客户租金总收入最高,为每天 8000 元.变式:某列火车众北京西站开往石家庄,全程 27 7km,火车出发 10min 开出 13km 后,以120km/h 匀速行驶. 试写出火车行驶的总路程 S 与匀速行驶的时间 t 之间的关系式,并求火车离开北京 2h 内行驶的路程.例 2 要建一个容积为 8m3,深为 2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为 120 元...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2014高中数学 3.2.2-1应用已知函数模型解决实际问题教案 新人教A版必修1

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部