(新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计 (新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计 《正弦定理和余弦定理》复习课教学设计 设计意图:学生通过必修 5 的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。 数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数 学知识的理解和掌握。虽然是复习课,但我们不能一味的讲题,在教学中应体现 以下教学思想:⑴重视教学各环节的合理安排:设疑探究拓展实践循环此流程 在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。 ⑵ 重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。 ⑶ 重视提出问题、解决问题策略的指导。 ⑷ 重视加强前后知识的密切联系。对于新知识的探究,必须增加足够的预备知识,做好衔接。要对学生已有的知识进行分析、整理和筛选,把对学生后继学习中有需要的知识选择出来,在新知识介绍之前进行复习。 ⑸ 注意避开过于繁琐的形式化训练。从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避开这一类问题的出现。 二、实施教学过程 评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解. 思考讨论:该题若用余弦定理如何解决? 已知 a、b、c 分别是△ABC 的三个内角A、B、C 所对的边, 若△ABC 的面积为,c=2,A=600,求边 a,b 的值;若 a=ccosB,且 b=csinA,试推断△ABC 的形状。 变式训练、归纳整理 已知 a、b、c 分别是△ABC 的三个内角A、B、C 所对的边,若 b cosC=(2a-c)cosB (1)求角 B (2)设,求 a+c 的值。 剖析:同样知道三角形中边角关系,利用正余弦定理边化角或角化边,从而解决问题,此题所变化的是与向量相结合,利用向量的模与数量积反映三角形的边角关系,把本质看清了,问题与例...