“图形的认识”核心知识的深层理解 在小学阶段,“图形与几何”的学习内容主要是欧几里得几何,欧几里得几何学是现实世界最简单、最粗略、最直观的近似刻画,它把空间分解为最基本的元素——点、线、面,用公理来规定点、线、面、体之间的关系,再用形式逻辑规则来推证一系列的性质。欧氏几何学所使用的工具很简单,所以只讨论涉及直线、平面、直方体等“平直性”的变化。讨论对象是抽象出来的那些平直的概念,比如:点、线、面、体、角。在教学过程中应当注意的是,这些概念涉及的线都是直的,涉及的面都是平的。一、“图形的认识”内容结构关于图形的认识,小学阶段主要是欧式几何空间中的点、线、面、体、角,描述平面图形与立体图形的特征与性质。小学数学中“图形的认识”只要涉及平面图形和立体图形,具体包括:点;线:直线、射线、线段;角:直角、锐角、钝角、平角;平面图形:三角形、四边形(长方形、正方形、平行四边形、梯形)、圆;立体图形:长方体、正方体、圆柱、圆锥、球。二、“图形的认识”深层理解2024 年版《数学课程标准》在数学课程的总体目标中明确提出四基的观念,具体包括基础知识、基本技能、基本思想、基本活动经验。那么,在学习“图形的认识”的过程中,除了要把握图形的特征与性质以外,在基本思想与基本活动经验方面,有怎样的教育功能和价值?是需要老师深层次认识和理解的。从数学的视角来看,教学图形的认识,其核心要把握 5 个方面:图形的抽象、图形的分类、图形的定义、图形的性质、图形的转化。(一)图形的抽象图形是人类通过对客观物体的长期观察逐渐抽象出来的。抽象的核心是把物体的外部形象用线条描绘在二维平面上。这种抽象不仅舍去了物体的颜色、构成材料等物体的本质要素,还忽略了所占空间。例如:点是位置的抽象,在几何中用“点”来标记一个物体的位置(生活中的楼房、公园;地图上的城市;天空中的天体,不管多大的物体都可以根据实际描述的需要用点来表示);线是路径的抽象,我们把“从一个地方到另一个地方”抽象为线段、折线段或曲线段。生活中长短、宽窄和高矮不同的物体,都占据一定的空间,这些反映到我们的脑子里就有了形状的概念,就抽象成了几何图形。“长方形”不是某个具体的物体,而是抽象了的图形,是一种理念上的存在。在欧氏几何里,点只有位置,不分大小;线段只有长度,不分宽窄;面只有长度和宽度,不分薄厚。(二)图形的分类分类是一种十分重要的科学思想方法。在分...