电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【优化指导】高中数学(基础预习+课堂探究+达标训练)9.3 等比数列第2课时 湘教版必修4

【优化指导】高中数学(基础预习+课堂探究+达标训练)9.3 等比数列第2课时 湘教版必修4_第1页
1/3
【优化指导】高中数学(基础预习+课堂探究+达标训练)9.3 等比数列第2课时 湘教版必修4_第2页
2/3
【优化指导】高中数学(基础预习+课堂探究+达标训练)9.3 等比数列第2课时 湘教版必修4_第3页
3/3
第 2 课时 等比数列的性质学习目标重点难点1.记住等比数列的性质,能够运用等比数列的性质解决有关问题;2.能运用等比数列的通项公式和性质求解等比数列的有关计算问题;3.会运用等比数列知识解决实际问题.重点:等比数列的性质及其应用;难点:等比数列的实际应用;疑点:等比数列性质与等差数列性质的区别.预习交流 1对照等差数列的性质,分析在等比数列中下列结论是否成立?(1)若{an}是等比数列,则{a2n},{a2n-1},{kan}(k 为非零常数)也是等比数列;(2)若{an},{bn}都是等比数列,则{anbn},,{a}也是等比数列;(3)在有 穷等比数列{an}中,与首末两项等距离的两项的积相等,即 a1·an=a2·an-1=a3·an-2=…=ak·an-k+1=…;(4)在等比数列{an}中,若 m,n,s,t∈N*,则当 m+n=s+t 时,有 am·an=as·at,特别地,当 m+n=2t 时,有 am·an=a.预习交流 2解决等比数列问题时,通常可用哪两种方法?它们各自有什么优缺点?预习交流 3实际应用问题中,哪些常常会与等比数列模型有关?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习交流 1:提示:上述结论都是成立的,它们可以看作是等比数列的常用性质,证明方法可类比等差数列中相应性质的证明,运用等比数列的定义、通项公式进行证明.预习交流 2:提示:(1)基本量法:利用等比数列的基本量 a1,q,先求公比,后求其他量.这是解等比数列问题的常用方法,其优点是思路简单、实用,缺点是有时计算较繁琐.(2)等比数列性质法:等比数列相邻几项的积成等比数列、与首末项等距离的两项的积相等在解题中经常被用到.优点是:计算简捷、运算量少,快速准确.预习交流 3:提示:产值增长率、银行利息、细胞分裂和细菌繁殖等实际问题,常与等比数列有关,可采用等比数列模型求解.一、等比数列性质的应用(1)在等比数列{an}中,若 a3=,a9=3,则 a15=__________.(2)在等比数列{an}中,若 a7=-2,则该数列的前 13 项的乘积等于__________.思路分析:对于(1),考虑到已知各项和欲求项的下标之间有关系:3+15=2×9,因此可利用等比数列的性质 aman=a 计算 a15的值;对于(2),由于数列的前 13 项的乘积都可利用等比数列的性质转化为 a7的值,因此可代入求值.1.在等比数列{an}中,a1,a99是方程 x2-10x+16=0 的两个根,则 a50的值为( ).A.10 B.16 C.±4 D.42.在各项...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【优化指导】高中数学(基础预习+课堂探究+达标训练)9.3 等比数列第2课时 湘教版必修4

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部