电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习第二章 函数与导数第6课时 二 次 函 数VIP免费

高考数学总复习第二章 函数与导数第6课时 二 次 函 数_第1页
1/5
高考数学总复习第二章 函数与导数第6课时 二 次 函 数_第2页
2/5
高考数学总复习第二章 函数与导数第6课时 二 次 函 数_第3页
3/5
第二章函数与导数第6课时二次函数第三章(对应学生用书(文)、(理)18~19页)考情分析考点新知①由于二次函数与二次方程、二次不等式之间有着紧密的联系,加上三次函数的导函数是二次函数,因此对二次函数的考查一直是高考的热点问题.②以二次函数为背景的应用题也是高考的常考题型,同时借助二次函数模型考查代数推理问题是一个难点.①掌握二次函数的概念、图象特征.②掌握二次函数的对称性和单调性,会求二次函数在给定区间上的最值.③掌握二次函数、一元二次方程及一元二次不等式这“三个二次”之间的关系,提高解综合问题的能力.,1.(必修1P54测试7)函数f(x)=x2+2x-3,x∈[0,2]的值域为________.答案:[-3,5]解析:由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].2.二次函数y=-x2+2mx-m2+3的图象的对称轴为x+2=0,则m=________,顶点坐标为________,递增区间为________,递减区间为________.答案:-2(-2,3)(-∞,-2][-2,+∞)3.(必修1P45习题8改编)函数f(x)=(x+1)(x-a)是偶函数,则f(2)=________.答案:3解析:由f(-x)=f(x),得a=1,∴f(2)=3.4.(必修1P44习题3)函数f(x)=的单调增区间是________.答案:R解析:画出函数f(x)的图象可知.5.设abc>0,二次函数f(x)=ax2+bx+c的图象可能是________.(填序号)答案:④解析:若a>0,则b、c同号,③④两图中c<0,则b<0,所以->0,④正确;若a<0,则b、c异号,①中c<0,则b>0,->0,不符合,②中c>0,则b<0,-<0,不符合.1.二次函数的解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0).(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式f(x)=a(x-h)2+k(a≠0).(3)零点式(两根式):若二次函数的图象与x轴的交点为(x1,0),(x2,0),则其解析式f(x)=a(x-x1)(x-x2)(a≠0).2.二次函数的图象及性质二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴方程为x=-,顶点坐标是.(1)当a>0,函数图象开口向上,函数在区间(-∞,-]上是单调减函数,在[-,+∞)上是单调增函数,当x=-时,y有最小值,ymin=.(2)当a<0,函数图象开口向下,函数在区间[-,+∞)上是单调减函数,在(-∞,-]上是单调增函数,当x=-时,y有最大值,ymax=.3.二次函数f(x)=ax2+bx+c(a≠0),当Δ=b2-4ac>0时,图象与x轴有两个交点M1(x1,0),M2(x2,0),则M1M2=.题型1求二次函数解析式例1已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,求二次函数f(x)的解析式.解:(解法1:利用一般式)设f(x)=ax2+bx+c(a≠0),解得∴所求二次函数为f(x)=-4x2+4x+7.(解法2:利用顶点式)设f(x)=a(x-m)2+n, f(2)=f(-1),∴抛物线对称轴为x==,即m=;又根据题意,函数最大值ymax=8,∴n=8,∴f(x)=a2+8. f(2)=-1,∴a+8=-1,解得a=-4.∴f(x)=-42+8=-4x2+4x+7.(解法3:利用两根式)由题意知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.又函数有最大值ymax=8,即=8,解得a=-4或a=0(舍),∴所求函数的解析式为f(x)=-4x2-(-4)x-2×(-4)-1=-4x2+4x+7.已知二次函数f(x)=ax2+bx+c图象的顶点为(-1,10),且方程ax2+bx+c=0的两根的平方和为12,求二次函数f(x)的表达式.解:由题意可设f(x)=a(x+1)2+10,即f(x)=ax2+2ax+a+10;∴b=2a,c=a+10,设方程ax2+bx+c=0的两根为x1、x2,则x+x=12,即(x1+x2)2-2x1x2=12,∴-2×=12.又b=2a,c=a+10,∴-2×=12,解得a=-2,∴f(x)=-2x2-4x+8.题型2含参变量二次函数的最值例2函数f(x)=2x2-2ax+3在区间[-1,1]上最小值记为g(a).(1)求g(a)的函数表达式;(2)求g(a)的最大值.解:(1)①当a<-2时,函数f(x)的对称轴x=<-1,则g(a)=f(-1)=2a+5;②当-2≤a≤2时,函数f(x)的对称轴x=∈[-1,1],则g(a)=f=3-;③当a>2时,函数f(x)的对称轴x=>1,则g(a)=f(1)=5-2a.综上所述,g(a)=(2)①当a<-2时,g(a)<1;②当-2≤a≤2时,g(a)∈[1,3];③当a>2时,g(a)<1.由①②③可得g(a)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学总复习第二章 函数与导数第6课时 二 次 函 数

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部