高考达标检测(四十)轨迹方程求解3——方法直接法、定义法、代入法一、选择题1.(2018·深圳调研)已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且QP·QF=FP·FQ,则动点P的轨迹方程为()A.x2=4yB.y2=3xC.x2=2yD.y2=4x解析:选A设点P(x,y),则Q(x,-1). QP·QF=FP·FQ,∴(0,y+1)·(-x,2)=(x,y-1)·(x,-2),即2(y+1)=x2-2(y-1),整理得x2=4y,∴动点P的轨迹方程为x2=4y.2.(2018·呼和浩特调研)已知椭圆+=1(a>b>0),M为椭圆上一动点,F1为椭圆的左焦点,则线段MF1的中点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线解析:选B设椭圆的右焦点是F2,由椭圆定义可得|MF1|+|MF2|=2a>2c,所以|PF1|+|PO|=(|MF1|+|MF2|)=a>c,所以点P的轨迹是以F1和O为焦点的椭圆.3.已知正方形的四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),点D,E分别在线段OC,AB上运动,且|OD|=|BE|,设AD与OE交于点G,则点G的轨迹方程是()A.y=x(1-x)(0≤x≤1)B.x=y(1-y)(0≤y≤1)C.y=x2(0≤x≤1)D.y=1-x2(0≤x≤1)解析:选A设D(0,λ),E(1,1-λ),0≤λ≤1,所以线段AD的方程为x+=1(0≤x≤1),线段OE的方程为y=(1-λ)x(0≤x≤1),联立方程组(λ为参数),消去参数λ得点G的轨迹方程为y=x(1-x)(0≤x≤1).4.(2018·安徽六安一中月考)如图,已知F1,F2是椭圆Γ:+=1(a>b>0)的左、右焦点,P是椭圆Γ上任意一点,过F2作∠F1PF2的外角的角平分线的垂线,垂足为Q,则点Q的轨迹为()A.直线B.圆C.椭圆D.双曲线解析:选B延长F2Q与F1P的延长线交于点M,连接OQ.因为PQ是∠F1PF2的外角的角平分线,且PQ⊥F2M,所以在△PF2M中,|PF2|=|PM|,且Q为线段F2M的中点.又O为线段F1F2的中点,由三角形的中位线定理,得|OQ|=|F1M|=(|PF1|+|PF2|).由椭圆的定义,得|PF1|+|PF2|=2a,所以|OQ|=a,所以点Q的轨迹为以原点为圆心,半径为a的圆.5.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,椭圆的另一个焦点F的轨迹方程是()A.y2-=1(y≤-1)B.y2-=1C.y2-=-1D.x2-=1解析:选A由题意,得|AC|=13,|BC|=15,|AB|=14,又|AF|+|AC|=|BF|+|BC|,∴|AF|-|BF|=|BC|-|AC|=2,故点F的轨迹是以A,B为焦点,实轴长为2的双曲线的下支. c=7,a=1,∴b2=48,∴点F的轨迹方程为y2-=1(y≤-1).6.(2018·梅州质检)动圆M经过双曲线x2-=1的左焦点且与直线x=2相切,则圆心M的轨迹方程是()A.y2=8xB.y2=-8xC.y2=4xD.y2=-4x解析:选B双曲线x2-=1的左焦点F(-2,0),动圆M经过点F且与直线x=2相切,则圆心M到点F的距离和到直线x=2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y2=-8x.二、填空题7.已知F是抛物线y=x2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是____________.解析:因为抛物线x2=4y的焦点F(0,1),设线段PF的中点坐标是(x,y),则P(2x,2y-1)在抛物线x2=4y上,所以(2x)2=4(2y-1),化简得x2=2y-1.答案:x2=2y-18.已知圆的方程为x2+y2=4,若抛物线过点A(-1,0),B(1,0)且以圆的切线为准线,则抛物线的焦点的轨迹方程是____________.解析:设抛物线焦点为F,过A,B,O作准线的垂线AA1,BB1,OO1,则|AA1|+|BB1|=2|OO1|=4,由抛物线定义得|AA1|+|BB1|=|FA|+|FB|,∴|FA|+|FB|=4,故F点的轨迹是以A,B为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为+=1(y≠0).答案:+=1(y≠0)9.(2018·河北定州中学测试)已知A(1,2),B(-1,2),动点P满足AP⊥BP,若双曲线-=1(a>0,b>0)的渐近线与动点P的轨迹没有公共点,则双曲线的离心率的取值范围是__________.解析:由AP⊥BP,可得动点P的轨迹方程为x2+(y-2)2=1,易知双曲线的一条渐近线方程为y=x,由题意知圆心(0,2)到渐近线的距离大于半径1,所以>1,即3a2>b2,又b2=c2-a2,所以离心率e=<2,又双曲线的离心率e>1,所以1b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的方程;(2)若动点P(x0,y0)为椭圆...