江苏省淮安中学高二数学《参数方程》学案教学目标:教学重点:教学难点:一、问题情境引入怎样求出弹道曲线的方程?二、概念及例题讲解(一)参数方程的意义1. 参数方程例 1.如图,以 O 为圆心,分别以为半径作两个圆,自 O 作一条射线分别交两圆于 M,N 两点,自 M 作于 T,自 N 作于 P,求点 P 的轨迹的参数方程. (二)参数方程与普通方程的互化例 1.将下列参数方程化为普通方程:1),t 为参数;2);3),r 为参数.用心 爱心 专心63例 2.指出参数方程为参数表示的曲线.例 3.如图,已知直线过点,且斜率角为,写出直线的普通方程,并选择适当的参数将它化为参数方程.例 4.选择适当的参数,将圆的方程化为参数方程.(三)参数方程的应用例 5、如图,已知点 M 是椭圆上在第一象限内的一点,是椭圆的两个顶点,O 为原点,求四边形 MAOB 的面积的最大值.例6、OA 是圆 C 的直径,且 OA=2a,射线 OB 与圆交于 Q 点,和经过 A 点用心 爱心 专心64的切线交于 B 点,作 PQOA,PB∥OA,试求点 P 的轨迹方程.(四)参数方程中曲线欣赏运用多媒体演示平摆线和圆的渐开线的生成过程,在欣赏的同时,体 会参数方程在曲线研究中的地 位.用心 爱心 专心65