江苏省连云港市灌云县四队中学高中数学必修四教案:三角函数的周期性教学目标1.理解周期函数、最小正周期的定义;2.会求正、余弦函数的最小正周期。重点难点函数的周期性、最小正周期周期的定义教学过程(一)自学质疑:问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?…… (2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?(二)互动探究:1.周期函数的定义对于函数,如果存在一个非零常数,使得当取定义域内的每一个值时,都有,那么函数就叫做周期函数,非零常数叫做这个函数的周期。说明:(1)必须是常数,且不为零; (2)对周期函数来说必须对定义域内的任意都成立。2.最小正周期的定义对于一个周期函数,如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做的最小正周期。说明:(1)我们现在谈到三角函数周期时,如果不加特别说明,一般都是指的最小正周期;(2)从图象上可以看出,;,的最小正周期为;(3)【判断】:是不是所有的周期函数都有最小正周期? (没有最小正周期)(三)精讲点拨:例 1:求下列函数周期:[1(1),;(2),;(3),.解:(1)∵,∴自变量只要并且至少要增加到,函数,的值才能重复 出现, 所以,函数,的周期是.(2)∵,∴自变量只要并且至少要增加到,函数,的值才能重复出现,所以,函数,的周期是.(3)∵,∴自变量只要并且至少要增加到,函数,的值才能重复出现,所以,函数,的周期是.说明:(1)一般结论:函数及函数,(其中 为常数,且,)的周期; (2)若,例如:①,;②,;③,.则这三个函数的周期又是什么?一般结论:函数及函数,的周期.课外作业教学反思2