浙江省温州市永嘉中学教育集团楠江校区 2014 高中数学 3.3.2 简单的线性规划教案 2 新人教 A 版必修 5【教学目标】1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。【教学过程】1.课题导入[复习引入]: 1、二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:2.讲授新课线性规划在实际中的应用: 线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务下面我们就来看看线性规划在实际中的一些应用:[范例讲解]例5营养学家指出,成人良好的日常饮食应该至少提供 0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物 A 含有 0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费 28 元;而 1kg 食物 B 含有 0.105kg碳水化合物,0.14kg 蛋白质,0.07kg 脂肪,花费21 元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物 A 和食物 B多少 kg?指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一.例6在上一节例 3 中,若根据有关部门的规定,初中每人每年 可收取学费 1 600 元,高中每人每年可收取学费 2 700 元。那么开设初中班和高中班各多少个,每年收取的学费总额最高多?1指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一结合上述两例子总结归纳一下解决这类问题的思路和方法:简单线性规划问题就是求线性目标函数在线性约束条件下 的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)...