电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第二轮第16讲 概率与统计

第二轮第16讲  概率与统计_第1页
1/26
第二轮第16讲  概率与统计_第2页
2/26
第二轮第16讲  概率与统计_第3页
3/26
第 16 讲 概率与统计概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结:类型一 “非等可能”与“等可能”混同例 1 掷两枚骰子,求所得的点数之和为 6 的概率.错解 掷两枚骰子出现的点数之和 2,3,4,…,12 共 11 种基本事件,所以概率为 P=剖析 以上 11 种基本事件不是等可能的,如点数和 2 只有(1,1),而点数之和为 6 有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共 5 种.事实上,掷两枚骰子共有 36 种基本事件,且是等可能的,所以“所得点数之和为 6”的概率为 P=.类型二 “互斥”与“对立”混同例 2 把红、黑、白、蓝 4 张纸牌随机地分给甲、乙、丙、丁 4 个人,每个人分得 1 张,事件“甲分得红牌”与“乙分得红牌”是( ) A.对立事件 B.不可能事件 C.互斥但不对立事件 D.以上均不对错解 A剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 : (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生. 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选 C.类型三 “互斥”与“独立”混同例 3 甲投篮命中率为 O.8,乙投篮命中率为 0.7,每人投 3 次,两人恰好都命中 2 次的概率是多少?错解 设“甲恰好投中两次”为事件 A,“乙恰好投中两次”为事件 B,则两人都恰好投中两次为事件 A+B,P(A+B)=P(A)+P(B): 剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中 2 次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.解: 设“甲恰好投中两次”为事件 A,“乙恰好投中两次”为事件 B,且 A,B 相互独立,则两人都恰好投中两次为事件 A·B,于是 P(A·B)=P(A)×P(B)= 0.169类型四 “条件概率 P(B / A)”与“积事件的概率 P(A·B)”混同例 4 袋中有 6 个黄色、4 个白色的乒乓球,作不放回抽样,每次任取一球,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第二轮第16讲 概率与统计

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部