第四类 概率问题重在“辨”——辨析、辨型概率与统计问题的求解关键是辨别它的概率模型,只要模型一找到,问题便迎刃而解.而概率与统计模型的提取往往需要经过观察、分析、归纳、判断等复杂的辨析思维过程,同时还需清楚概率模型中等可能事件、互斥事件、对立事件等事件间的关系,注意放回和不放回试验的区别,合理划分复杂事件.【例 4】 (2016·全国Ⅱ卷)某险种的基本保费为 a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85aa1.25a1.5a1. 75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234≥5概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60%的概率.(3)求续保人本年度的平均保费与基本保费的比值.解 (1)设 A 表示事件:“一续保人本年度的保费高于基本保费”,则事件 A 发生当且仅当一年内出险次数大于 1,(辨析 1)故 P(A)=0.20+0.20+0.10+0.05=0.55.(辨型 1)(2)设 B 表示事件:“一续保人本年度的保费比基本保费高出 60%”,则事件 B 发生当且仅当一年内出险次数大于 3,(辨析 2)故 P(B)=0.10+0.05=0.15.又 P(AB)=P(B),故 P(B|A)====.(辨型 2)因此所求概率为.(3)记续保人本年度的保费为 X,则 X 的分布列为X0.85aa1.25a1.5a1.75a2aP 0.300.150.200.200.100.05(辨型 3)E(X)=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为 1.23.探究提高 1.辨析(1):判断事件 A 发生,在一年内出险次数为 2,3,4 或≥5.辨型(1):该问题为求随机事件的概率,利用互斥事件的概率加法公式求解.辨析(2):判断事件 B 发生,在一年内出险次数为 4 或≥5.辨型(2):该问题为条件概率,可利用公式求解.2.求解此类问题的关键:(1)会判断,先判断事件的类型,再利用对立事件的概率公式、条件概率的公式等求解概率;(2)会计算,要求随机变量 X 的期望,需先求出 X 的所有可能取值,然后求出随机变量 X 取每个值时的概率,再利用随机变量的数学期望的定义进行计算.【训练 4】 共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理...