电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 不等式选讲 第二节 不等式的证明习题 理 试题VIP免费

高考数学一轮复习 不等式选讲 第二节 不等式的证明习题 理 试题_第1页
1/3
高考数学一轮复习 不等式选讲 第二节 不等式的证明习题 理 试题_第2页
2/3
高考数学一轮复习 不等式选讲 第二节 不等式的证明习题 理 试题_第3页
3/3
第二节不等式的证明[基础达标]解答题(每小题10分,共40分)1.(2015·湖南高考)设a>0,b>0,且a+b=.证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.【解析】由a+b=,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2=2,即a+b≥2.(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0得0b>c,求证:.【解析】(1)原不等式可化为|x+1|≥1,由此可得x≥0或x≤-2.故不等式f(x)≤|x+1|+x的解集A为{x|x≥0或x≤-2}.(2)由=2+≥4,所以,即成立.当,即a+c=2b时取等号.3.(2015·河南六市联考)设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:a+b<;(2)比较|1-4ab|与2|a-b|的大小.【解析】(1)记f(x)=|x-1|-|x+2|=由-2<-2x-1<0解得-0,故|1-4ab|2>4|a-b|2,即|1-4ab|>2|a-b|.4.已知a是常数,对任意实数x,不等式|x+1|-|2-x|≤a≤|x+1|+|2-x|都成立.(1)求a的值;(2)设m>n>0,求证:2m+≥2n+a.【解析】(1)设f(x)=|x+1|-|2-x|,则f(x)=∴f(x)的最大值为3.∵对任意实数x,|x+1|-|2-x|≤a都成立,即f(x)≤a,∴a≥3.设h(x)=|x+1|+|2-x|=∴h(x)的最小值为3.∵对任意实数x,|x+1|+|2-x|≥a都成立,即h(x)≥a,∴a≤3.∴a=3.(2)由(1)得a=3.∵2m+-2n=(m-n)+(m-n)+,又∵m>n>0,∴(m-n)+(m-n)+≥3=3.∴2m+≥2n+a.[高考冲关]1.(5分)设a,b∈R,给出下列不等式:①lg(1+a2)>0;②a2+b2≥2(a-b-1);③a2+3ab>2b2;④,其中所有恒成立的不等式序号是.②【解析】①a=0时不成立;②∵a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.2.(10分)(2015·银川质检)已知a,b,c∈R,且a2+b2+c2=1.(1)求证:|a+b+c|≤;(2)若不等式|x-1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,求x的取值范围.【解析】(1)因为a,b,c∈R,a2+b2+c2=1,所以(a+b+c)2=a2+b2+c2+2(ab+bc+ca)≤a2+b2+c2+2=a2+b2+c2+2(a2+b2+c2)=3,所以(a+b+c)2≤3,即|a+b+c|≤,当且仅当a=b=c时取得等号.(2)由(1)可知不等式|x-1|+|x+1|≥3,从而解得x的取值范围为.3.(10分)(2014·新课标全国卷Ⅰ)若a>0,b>0,且.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.【解析】(1)由,得ab≥2,且当a=b=时等号成立,故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)由(1)知ab≥2,则2a+3b≥2≥4,由于4>6,从而不存在a,b,使得2a+3b=6.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 不等式选讲 第二节 不等式的证明习题 理 试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部