课时分层训练(十五)导数与函数的极值、最值A组基础达标(建议用时:30分钟)一、选择题1.下列函数中,既是奇函数又存在极值的是()A.y=x3B.y=ln(-x)C.y=xe-xD.y=x+D[由题可知,B,C选项中的函数不是奇函数,A选项中,函数y=x3单调递增(无极值),而D选项中的函数既为奇函数又存在极值.]2.当函数y=x·2x取极小值时,x等于()【导学号:31222089】A.B.-C.-ln2D.ln2B[令y′=2x+x·2xln2=0,∴x=-.经验证,-为函数y=x·2x的极小值点.]3.函数y=lnx-x在x∈(0,e]上的最大值为()A.eB.1C.-1D.-eC[函数y=lnx-x的定义域为(0∞,+).又y′=-1=,令y′=0得x=1,当x∈(0,1)时,y′>0,函数单调递增;当x∈(1,e]时,y′<0,函数单调递减.当x=1时,函数取得最大值-1.]4.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()【导学号:31222090】A.(-1,2)B.(∞-,-3)∪(6∞,+)C.(-3,6)D.(∞-,-1)∪(2∞,+)B[ f′(x)=3x2+2ax+(a+6),由已知可得f′(x)=0有两个不相等的实根,∴Δ=4a2-4×3(a+6)>0,即a2-3a-18>0,∴a>6或a<-3.]5.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为y=f(x)图象的是()ABCDD[因为[f(x)ex]′=f′(x)ex+f(x)(ex)′=[f(x)+f′(x)]ex,且x=-1为函数f(x)ex的一个极值点,所以f(-1)+f′(-1)=0.选项D中,f(-1)>0,f′(-1)>0,不满足f′(-1)+f(-1)=0.]二、填空题6.函数f(x)=x3+x2-3x-4在[0,2]上的最小值是________.【导学号:31222091】-[f′(x)=x2+2x-3,令f′(x)=0得x=1(x=-3舍去),又f(0)=-4,f(1)=-,f(2)=-,故f(x)在[0,2]上的最小值是f(1)=-.]7.设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是________.(∞-,-1)[ y=ex+ax,∴y′=ex+a. 函数y=ex+ax有大于零的极值点,则方程y′=ex+a=0有大于零的解, x>0时,-ex<-1,∴a=-ex<-1.]8.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p元,销量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8300-170p-p2,则该商品零售价定为________元时利润最大,利润的最大值为________元.3023000[设该商品的利润为y元,由题意知,y=Q(p-20)=-p3-150p2+11700p-166000,则y′=-3p2-300p+11700,令y′=0得p=30或p=-130(舍),当p∈(0,30)时,y′>0,当p∈(30∞,+)时,y′<0,因此当p=30时,y有最大值,ymax=23000.]三、解答题9.已知函数f(x)=-x3+ax2+b(a,b∈R).(1)要使f(x)在(0,2)上单调递增,试求a的取值范围;(2)当a<0时,若函数满足y极大=1,y极小=-3,试求y=f(x)的解析式.[解](1)f′(x)=-3x2+2ax.依题意f′(x)≥0在(0,2)上恒成立,即2ax≥3x2. x>0,∴2a≥3x,∴2a≥6,∴a≥3,即a的取值范围是[3∞,+).5分(2) f′(x)=-3x2+2ax=x(-3x+2a). a<0,当x∈时,f′(x)≤0,f(x)递减.当x∈时,f′(x)>0,f(x)递增.当x∈[0∞,+)时,f′(x)≤0,f(x)递减.8分∴⇒∴f(x)=-x3-3x2+1.12分10.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k(k>0).现已知相距18km的A,B两家化工厂(污染源)的污染强度分别为a,b,它们连线上任意一点C处的污染指数y等于两化工厂对该处的污染指数之和.设AC=x(km).(1)试将y表示为x的函数;(2)若a=1,且x=6时,y取得最小值,试求b的值.[解](1)设点C受A污染源污染程度为,点C受B污染源污染程度为,其中k为比例系数,且k>0,从而点C处受污染程度y=+.5分(2)因为a=1,所以y=+,y′=k,8分令y′=0,得x=,又此时x=6,解得b=8,经验证符合题意,所以,污染源B的污染强度b的值为8.12分B组能力提升(建议用时:15分钟)1.(2017·石家庄一模)若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为,则m的值为()【导学号:31222092】A.-B.-C.D.D[由题意可得f(m)=m3+am2+bm=0,m≠0,则m2+am+b=0①...