电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 坐标系与参数方程 第2节 参数方程教师用书 文 试题VIP免费

高考数学一轮复习 坐标系与参数方程 第2节 参数方程教师用书 文 试题_第1页
1/8
高考数学一轮复习 坐标系与参数方程 第2节 参数方程教师用书 文 试题_第2页
2/8
高考数学一轮复习 坐标系与参数方程 第2节 参数方程教师用书 文 试题_第3页
3/8
第二节参数方程————————————————————————————————[考纲传真]1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数并且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y-y0=tanα(x-x0)(t为参数)圆x2+y2=r2(θ为参数)椭圆+=1(a>b>0)(φ为参数)温馨提示:在直线的参数方程中,参数t的系数的平方和为1时,t才有几何意义且几何意义为:|t|是直线上任一点M(x,y)到M0(x0,y0)的距离.1.(思考辨析)判断下列结论的正误.(“√”“正确的打,错误的打×”)(1)参数方程中的x,y都是参数t的函数.()(2)过M0(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).参数t的几何意义表示:直线l上以定点M0为起点,任一点M(x,y)为终点的有向线段M0M的数量.()(3)方程表示以点(0,1)为圆心,以2为半径的圆.()(4)已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为.()[答案](1)√(2)√(3)√(4)×2.(教材改编)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=-2x上C.在直线y=x-1上D.在直线y=x+1上B[由得所以(x+1)2+(y-2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y=-2x上.]3.(教材改编)在平面直角坐标系中,曲线C:(t为参数)的普通方程为________.x-y-1=0[由x=2+t,且y=1+t,消去t,得x-y=1,即x-y-1=0.]4.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=-2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为________.(2,-4)[由ρ(cosθ+sinθ)=-2,得x+y=-2.①由消去t得y2=8x.②联立①②得即交点坐标为(2,-4).]5.(2016·江苏高考)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.[解]椭圆C的普通方程为x2+=1.2分将直线l的参数方程代入x2+=1,得2+=1,即7t2+16t=0,8分解得t1=0,t2=-,所以AB=|t1-t2|=.10分参数方程与普通方程的互化已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.[解](1)直线l的普通方程为2x-y-2a=0,2分圆C的普通方程为x2+y2=16.4分(2)因为直线l与圆C有公共点,故圆C的圆心到直线l的距离d≤=4,8分解得-2≤a≤2.10分[规律方法]1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x及y的取值范围的影响,要保持同解变形.[变式训练1]在平面直角坐标系xOy中,若直线l:(t为参数)过椭圆C:(φ为参数)的右顶点,求常数a的值.【导学号:31222440】[解]直线l的普通方程为x-y-a=0,椭圆C的普通方程为+=1,4分所以椭圆C的右顶点坐标为(3,0),若直线l过椭圆的右顶点(3,0),则3-0-a=0,所以a=3.10分参数方程的应用已知曲线C:+=1,直线l:(t为参数).【导学号:31222441】(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.[解](1)曲线C的参数方程为(θ为参数).直线l的普通方程为2x+y-6=0.4分(2)曲线C上任意一点P(2cosθ,3sinθ)到l的距离为d=|4cosθ+3sin...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 坐标系与参数方程 第2节 参数方程教师用书 文 试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部