电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮总复习 第十四章 推理与证明专用题组 理 试题VIP免费

高考数学一轮总复习 第十四章 推理与证明专用题组 理 试题_第1页
1/7
高考数学一轮总复习 第十四章 推理与证明专用题组 理 试题_第2页
2/7
高考数学一轮总复习 第十四章 推理与证明专用题组 理 试题_第3页
3/7
第十四章推理与证明考点一合情推理与演绎推理8.(2012湖南,16,5分)设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…xN-1x2x4…xN,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到P2;当2≤i≤n-2时,将Pi分成2i段,每段个数,并对每段作C变换,得到Pi+1.例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第个位置;(2)当N=2n(n≥8)时,x173位于P4中的第个位置.答案(1)6(2)3×2n-4+11解析(1)由已知可得P1=x1x3x5x7x9x11x13x15x2x4x6x8x10x12x14x16,P2=x1x5x9x13x3x7x11x15x2x6x10x14x4x8x12x16,所以x7位于P2中第6个位置.(2)根据题意可知P4将这2n个数分成16段,每段有2n-4个数,每段数下标分别构成公差为16的等差数列,第1段的首项为1,其通项公式为16n-15,当16n-15=173时,n=N∉*;第2段的首项为9,其通项公式为16n-7,当16n-7=173时,n=N∉*;第3段的首项为5,其通项公式为16n-11,当16n-11=173时,n=N∉*;第4段的首项为13,其通项公式为16n-3,当16n-3=173时,n=11∈N*,故x173位于P4中第3×2n-4+11个位置上.评析本题主要考查了等差数列及归纳推理的方法和思想,要求学生能从所给的信息中总结出规律,考查学生分析问题、解决问题的能力.解题过程体现了由特殊到一般的思想.9.(2014北京,20,13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk-1(P),a1+a2+…+ak}表示Tk-1(P)和a1+a2+…+ak两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P':(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)解析(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P')=max{c+d+b,c+a+b}.当m=a时,T2(P')=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P').当m=d时,T2(P')=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P').所以无论m=a还是m=d,T2(P)≤T2(P')都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.评析本题考查了集合的表示、不等式、合情推理等知识;考查综合分析,归纳抽象,推理论证能力;熟练运用归纳的方法,通过特例分析理解抽象概念是解题的关键.10.(2012福建,17,13分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解析解法一:(1)选择②式,计算如下:sin215°+cos215°-sin15°cos15°=1-sin30°=1-=.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)=sin2α+cos2α+sinαcosα+sin2α-sinαcosα-sin2α=sin2α+cos2α=.解法二:(1)同解法一.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=+-sinα·(cos30°cosα+sin30°sinα)=-cos2α++(cos60°cos2α+sin60°sin2α)-·sinαcosα-sin2α=-cos2α++cos2α+·sin2α-sin2α-(1-cos2α)=1-cos2α-+cos2α=.评析本题主要考查同角三角函数的基本关系、两角和与差的三角函数公式、二倍角公式等基础知识,考查运算求解能力、抽象概括能力...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮总复习 第十四章 推理与证明专用题组 理 试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部