第 3 课时 整式的加减1.知道整式加减运算的法则,熟练进行整式的加减运算;(重点)2.能用整式加减运算解决实际问题;(难点)3.能在实际背景中体会进行整式加减的必要性.一、情境导入1.某学生合唱团出场时第一排站了 n 名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?(1)让学生写出答案:n+(n+1)+(n+2)+(n+3);(2)提问:以上答案能进一步化简吗?如何化简?我们进行了哪些运算?2.化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上的化简实际上进行了哪些运算?怎样进行整式的加减运算?二、合作探究探究点一:整式的加减【类型一】 整式的化简 化简:3(2x2-y2)-2(3y2-2x2).解析:先运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:3(2x2-y2)-2(3y2-2x2)=6x2-3y2-6y2+4x2=10x2-9y2.方法总结:去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.【类型二】 整式的化简求值 化简求值:a-2(a-b2)-(a+b2)+1,其中 a=2,b=-.解析:原式去括号合并得到最简结果,把 a 与 b 的值代入计算即可求出值.解:原式=a-2a+b2-a-b2+1=-3a+b2+1,当 a=2,b=-时,原式=-3×2+×(-)2+1=-6++1=-4.方法总结:化简求值时,一般先将整式进行化简,当代入求值时,要适当添上括号,否则容易发生计算错误,同时还要注意代数式中同一字母必须用同一数值代替,代数式中原有的数字和运算符号都不改变.【类型三】 利用 “ 无关 ” 进行说理或求值 有这样一道题“当 a=2,b=-2 时,求多项式 3a3b3-a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3 的值”,马小虎做题时把 a=2 错抄成 a=-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.解析:先通过去括号、合并同类项对多项式进行化简,然后代入 a,b 的值进行计算.解:3a3b3-a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3=(3-4+1)a3b3+(-++)a2b+(1-2)b2+b+3=b-b2+3.因为它不含有字母 a,所以代数式的值与 a 的取值无关.方法总结:解答此类题的思路就是把原式化简,得到一个不含指定字母的结果,便可说明该式与指定字母的取值无关.探究点二:整式加减的应用 如...