计算题3.6 已知三类训练样本为 :[ -1,-1 ], :[ 0,0 ], :[ 1,1 ]试用多类感知器算法求解判别函数。解:采纳多类情况 3 的方式分类,将训练样本写成增广向量形式,有 X = [ -1,-1,1 ], X = [ 0,0,1 ] , X = [ 1,1,1 ] 任取初始权向量为: W (1) = W (1) = W (1)= [ 0,0,0 ]取校正增量 c = 1。 迭代过程如下:第一次迭代,k = 1,以 X = [ -1,-1,1 ] 作为训练样本,计算得 d (1) = W(1) X = 0 d (1) = W(1) X = 0 d (1) = W(1) X = 0 X,但 d (1)>d (1)且 d (1)>d (1)不成立,故修改 3 个劝向量,即 W (2) = W (1) + X = [ -1,-1,1 ] W (2) = W (1) – X = [ 1,1,-1 ] W (2) = W (1) – X = [ 1,1,-1 ]第二次迭代,k = 2,以 X =[ 0,0,1 ] 作为训练样本,计算得 d (2) = W(2)X = 1 d (2) = W(2)X = -1 d (2) = W(2)X = -1X,但 d (2)>d (2)且 d (2)>d (2)不成立,故修改 3 个权向量,即 W (3) = W (2) – X = [ -1,-1,0 ] W (3) = W (2) + X = [ 1,1,0 ] W (3) = W (2) – X = [ 1,1,-2 ]第三次迭代,k = 3,以 X = [ 1,1,1 ] 作为训练样本,计算得 d (3) = W(3)X = -2 d (3) = W(3)X = 2 d (3) = W(3)X = 0 X,d (3)>d (3)成立,但 d (3)>d (3)不成立,故仍需修改部分权向量,即 W (4) = W (3) = [ -1,-1,0 ] W (4) = W (3) – X = [ 0,0,-1 ] W (4) = W (3) + X = [ 2,2,-1 ]以上经过一轮迭代运算后,三个样本还未正确分类,故进行下一轮迭代。第四次迭代,k = 4,以 X = [ -1,-1,1 ] 作为训练样本,计算得 d (4) = W(4)X = 2 d (4) = W(4)X = -1 d (4) = W(4)X = -5X,但 d (4)>d (4)且 d (4)>d (4)成立,故 3 个权向量不变,即 W (5) = W (4) = [ -1,-1,0 ] W (5) = W (4) = [ 0,0,-1 ] W (5) = W (4) = [ 2,2,-1 ]第五次迭代,k = 5,以 X = [ 0,0,1 ] 作为训练样本,计算得 d (5) = W(5)X = 0 d (5) = W(5)X = -1 d (5) = W(5)X = -1X,且 d (5)>d (5)和 d (5)>d (5)不成立,故修改 3 个权向量,即有W (6) = W (5) – ...