备课资料历史上数学计算方面的三大发明你知道数学计算方面的三大发明吗?这就是阿拉伯数字、十进制和对数.研究自然数遇到的第一个问题是计数法和进位制的问题,我们采用的十进制是中国人的一大发明.在商代中期的甲骨文中已有十进制,其中最大的数是 3 万,印度最早到六世纪末才有十进制.但是,目前使用的计数法和阿拉伯数字 1,2,3,4,5,6,7,8,9,0 是印度人最早开始使用,后来传到阿拉伯,由阿拉伯人传到欧洲,并被欧洲人所接受.十进制位置计数法的诞生,是自然数发展史上的一次飞跃,同一个数字由于它所在的位置不同而有不同的值.无穷多个自然数可以用有限个符号来驾驭,所有的自然数都可以方便清楚地表示出来.16 世纪前半叶,由于实际的需要,对计算技术的改进提出了前所未有的要求.这一时期计算技术最大的改进是对数的发明和应用,它的产生主要是由于天文和航海计算的迫切需要.为了简化天文航海方面所遇到的繁杂数值计算,自然希望将乘除法归结为简单的加减法.苏格兰数学家纳皮尔(Napier,J.1550~1617)在球面天文学的三角学研究中,首先发明了对数方法.1614 年他在题为《奇妙的对数定理说明书》一书中,阐述了他的对数方法,对数的使用价值为纳皮尔的朋友——英国数学家布里格斯(Birggs,H.1561~1630)所认识,他与纳皮尔合作,并于 1624 年出版了《对数算术》一书,公布了以 10 为底的 14 位对数表,并称以 10 为底的对数为常用对数.常用对数曾经在简化计算上为人们做过重大贡献,而自然对数以及以 e 为底的指数函数成了研究科学、了解自然的必不可少的工具.恩格斯曾把对数的发明与解析几何的创始,微积分学的建立并称为 17 世纪数学的三大成就.法国著名的数学家、天文学家拉普拉斯曾说:“对数的发明以其节省劳力而延长了天文学家的寿命.”一直到 18 世纪,瑞士数学家欧拉(Euler,L.1707~1783)才发现了指数与对数的关系,他指出“对数源出于指数”,这个见解很快被人们所接受.(设计者:邓新国)本章复习整体设计教学分析函数是描述客观世界变化规律的重要的数学模型,面对纷繁复杂的变化现象,我们还可以根据变化现象懂得不同特征进行分类研究.而指数函数、对数函数以及幂函数是研究客观世界的变化规律的三类重要且常用的基本初等函数,本章学习了这三类基本初等函数的概念和性质,因此我们对这一些基本知识和三类基本初等函数学完的前提下,综合复习所学知识,进行知识梳理和整合,同时通过进行知识梳理和整合,使学生形成知识网络,强化数学思想和方法的运用,通过复...